School of Life Sciences, Peking University, Beijing, 100871, China.
Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
Sci China Life Sci. 2024 Jul;67(7):1489-1501. doi: 10.1007/s11427-023-2518-8. Epub 2024 Apr 2.
The human face is a valuable biomarker of aging, but the collection and use of its image raise significant privacy concerns. Here we present an approach for facial data masking that preserves age-related features using coordinate-wise monotonic transformations. We first develop a deep learning model that estimates age directly from non-registered face point clouds with high accuracy and generalizability. We show that the model learns a highly indistinguishable mapping using faces treated with coordinate-wise monotonic transformations, indicating that the relative positioning of facial information is a low-level biomarker of facial aging. Through visual perception tests and computational 3D face verification experiments, we demonstrate that transformed faces are significantly more difficult to perceive for human but not for machines, except when only the face shape information is accessible. Our study leads to a facial data protection guideline that has the potential to broaden public access to face datasets with minimized privacy risks.
人脸是衰老的一个有价值的生物标志物,但采集和使用其图像会引发重大的隐私问题。在这里,我们提出了一种使用坐标单调变换保留与年龄相关特征的面部数据掩蔽方法。我们首先开发了一种深度学习模型,该模型可以高精度和泛化地直接从未经注册的人脸点云中估计年龄。我们表明,该模型通过使用坐标单调变换处理的人脸学习到一种高度不可区分的映射,这表明面部信息的相对定位是面部老化的低级生物标志物。通过视觉感知测试和计算 3D 人脸验证实验,我们证明,对于人类来说,经过变换的人脸更难被感知,但对于机器来说并非如此,除非只能访问面部形状信息。我们的研究导致了一个面部数据保护准则,该准则有可能在最小化隐私风险的情况下扩大公众对面部数据集的访问。