Suppr超能文献

基于深度学习的双平面 X 线重建下肢骨用于术前截骨规划。

Deep-learning based 3D reconstruction of lower limb bones from biplanar radiographs for preoperative osteotomy planning.

机构信息

Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.

Research in Orthopedic Computer Science (ROCS), University Hospital Balgrist, University of Zurich, Balgrist Campus, Lengghalde 5, 8008, Zurich, Switzerland.

出版信息

Int J Comput Assist Radiol Surg. 2024 Sep;19(9):1843-1853. doi: 10.1007/s11548-024-03110-5. Epub 2024 Apr 4.

Abstract

PURPOSE

Three-dimensional (3D) preoperative planning has become the gold standard for orthopedic surgeries, primarily relying on CT-reconstructed 3D models. However, in contrast to standing radiographs, a CT scan is not part of the standard protocol but is usually acquired for preoperative planning purposes only. Additionally, it is costly, exposes the patients to high doses of radiation and is acquired in a non-weight-bearing position.

METHODS

In this study, we develop a deep-learning based pipeline to facilitate 3D preoperative planning for high tibial osteotomies, based on 3D models reconstructed from low-dose biplanar standing EOS radiographs. Using digitally reconstructed radiographs, we train networks to localize the clinically required landmarks, separate the two legs in the sagittal radiograph and finally reconstruct the 3D bone model. Finally, we evaluate the accuracy of the reconstructed 3D models for the particular application case of preoperative planning, with the aim of eliminating the need for a CT scan in specific cases, such as high tibial osteotomies.

RESULTS

The mean Dice coefficients for the tibial reconstructions were 0.92 and 0.89 for the right and left tibia, respectively. The reconstructed models were successfully used for clinical-grade preoperative planning in a real patient series of 52 cases. The mean differences to ground truth values for mechanical axis and tibial slope were 0.52° and 4.33°, respectively.

CONCLUSIONS

We contribute a novel framework for the 2D-3D reconstruction of bone models from biplanar standing EOS radiographs and successfully use them in automated clinical-grade preoperative planning of high tibial osteotomies. However, achieving precise reconstruction and automated measurement of tibial slope remains a significant challenge.

摘要

目的

三维(3D)术前规划已成为骨科手术的金标准,主要依赖于 CT 重建的 3D 模型。然而,与站立位 X 射线相比,CT 扫描并非标准方案的一部分,通常仅用于术前规划。此外,它成本高,使患者暴露于高剂量辐射下,且在非负重位采集。

方法

在这项研究中,我们开发了一种基于深度学习的管道,基于从低剂量双平面站立 EOS 射线照片重建的 3D 模型,为高胫骨截骨术提供 3D 术前规划。使用数字重建射线照片,我们训练网络来定位临床所需的标志点,在矢状位射线照片中分离双腿,并最终重建 3D 骨骼模型。最后,我们评估了重建的 3D 模型在特定应用案例(如高胫骨截骨术)中术前规划的准确性,旨在消除在特定情况下(如高胫骨截骨术)进行 CT 扫描的需求。

结果

胫骨重建的平均 Dice 系数分别为 0.92 和 0.89,适用于右侧和左侧胫骨。重建模型成功用于 52 例真实患者系列的临床级术前规划。机械轴和胫骨斜率的平均差值分别为 0.52°和 4.33°。

结论

我们提出了一种从双平面站立 EOS 射线照片进行骨骼模型 2D-3D 重建的新框架,并成功将其用于高胫骨截骨术的自动临床级术前规划。然而,实现精确的重建和自动测量胫骨斜率仍然是一个重大挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a32d/11365828/32f4f286f42d/11548_2024_3110_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验