Suppr超能文献

DBDNMF:一种用于药物反应预测的双分支深度神经矩阵分解方法。

DBDNMF: A Dual Branch Deep Neural Matrix Factorization method for drug response prediction.

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, China.

Department of Ophthalmology, Xuzhou First People's Hospital, Xuzhou, Jiangsu, China.

出版信息

PLoS Comput Biol. 2024 Apr 4;20(4):e1012012. doi: 10.1371/journal.pcbi.1012012. eCollection 2024 Apr.

Abstract

Anti-cancer response of cell lines to drugs is in urgent need for individualized precision medical decision-making in the era of precision medicine. Measurements with wet-experiments is time-consuming and expensive and it is almost impossible for wide ranges of application. The design of computational models that can precisely predict the responses between drugs and cell lines could provide a credible reference for further research. Existing methods of response prediction based on matrix factorization or neural networks have revealed that both linear or nonlinear latent characteristics are applicable and effective for the precise prediction of drug responses. However, the majority of them consider only linear or nonlinear relationships for drug response prediction. Herein, we propose a Dual Branch Deep Neural Matrix Factorization (DBDNMF) method to address the above-mentioned issues. DBDNMF learns the latent representation of drugs and cell lines through flexible inputs and reconstructs the partially observed matrix through a series of hidden neural network layers. Experimental results on the datasets of Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) show that the accuracy of drug prediction exceeds state-of-the-art drug response prediction algorithms, demonstrating its reliability and stability. The hierarchical clustering results show that drugs with similar response levels tend to target similar signaling pathway, and cell lines coming from the same tissue subtype tend to share the same pattern of response, which are consistent with previously published studies.

摘要

在精准医学时代,细胞系对药物的抗癌反应迫切需要个体化精准医疗决策。湿实验测量既耗时又昂贵,几乎不可能广泛应用。设计能够精确预测药物和细胞系之间反应的计算模型,可以为进一步的研究提供可靠的参考。基于矩阵分解或神经网络的现有响应预测方法表明,线性或非线性潜在特征都适用于药物反应的精确预测。然而,它们中的大多数仅考虑线性或非线性关系来预测药物反应。在此,我们提出了一种双分支深度神经网络矩阵分解 (DBDNMF) 方法来解决上述问题。DBDNMF 通过灵活的输入来学习药物和细胞系的潜在表示,并通过一系列隐藏的神经网络层来重构部分观察到的矩阵。在癌症细胞系百科全书 (CCLE) 和癌症药物敏感性基因组学 (GDSC) 数据集上的实验结果表明,药物预测的准确性超过了最先进的药物反应预测算法,证明了其可靠性和稳定性。层次聚类结果表明,具有相似反应水平的药物往往针对相似的信号通路,而来自同一组织亚型的细胞系往往具有相同的反应模式,这与先前发表的研究结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/972d/11020650/a89dda91bf6d/pcbi.1012012.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验