Suppr超能文献

深度学习能在多大程度上提高对癌细胞系药物反应的预测?

How much can deep learning improve prediction of the responses to drugs in cancer cell lines?

机构信息

Department of Mathematics and Computational Biology Programme, National University of Singapore, 119076, Singapore.

出版信息

Brief Bioinform. 2022 Jan 17;23(1). doi: 10.1093/bib/bbab378.

Abstract

The drug response prediction problem arises from personalized medicine and drug discovery. Deep neural networks have been applied to the multi-omics data being available for over 1000 cancer cell lines and tissues for better drug response prediction. We summarize and examine state-of-the-art deep learning methods that have been published recently. Although significant progresses have been made in deep learning approach in drug response prediction, deep learning methods show their weakness for predicting the response of a drug that does not appear in the training dataset. In particular, all the five evaluated deep learning methods performed worst than the similarity-regularized matrix factorization (SRMF) method in our drug blind test. We outline the challenges in applying deep learning approach to drug response prediction and suggest unique opportunities for deep learning integrated with established bioinformatics analyses to overcome some of these challenges.

摘要

药物反应预测问题源于个性化医疗和药物发现。深度学习网络已经应用于可用于 1000 多个癌细胞系和组织的多组学数据,以更好地进行药物反应预测。我们总结并研究了最近发表的最先进的深度学习方法。尽管在药物反应预测的深度学习方法方面取得了重大进展,但深度学习方法在预测训练数据集中未出现的药物的反应方面表现出其弱点。特别是,在我们的药物盲测中,评估的五种深度学习方法的表现均不如相似性正则化矩阵分解(SRMF)方法。我们概述了将深度学习方法应用于药物反应预测所面临的挑战,并提出了将深度学习与已建立的生物信息学分析相结合以克服其中一些挑战的独特机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验