Xu Haiping, Wang Jianxin, He Haiying, Hwang Inhui, Liu Yuzi, Sun Chengjun, Zhang Haozhe, Li Tao, Muntean John V, Xu Tao, Liu Di-Jia
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.
Depart-ment of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States.
J Am Chem Soc. 2024 Apr 17;146(15):10357-10366. doi: 10.1021/jacs.3c12722. Epub 2024 Apr 4.
Electrochemical reduction of carbon dioxide to organic chemicals provides a value-added route for mitigating greenhouse gas emissions. We report a family of carbon-supported Sn electrocatalysts with the tin size varying from single atom, ultrasmall clusters to nanocrystallites. High single-product Faradaic efficiency (FE) and low onset potential of CO conversion to acetate (FE = 90% @ -0.6 V), ethanol (FE = 92% @ -0.4 V), and formate (FE = 91% @ -0.6 V) were achieved over the catalysts of different active site dimensions. The CO conversion mechanism behind these highly selective, size-modulated -block element catalysts was elucidated by structural characterization and computational modeling, together with kinetic isotope effect investigation.
将二氧化碳电化学还原为有机化学品为减少温室气体排放提供了一条增值途径。我们报道了一系列碳负载的锡电催化剂,其锡的尺寸范围从单原子、超小团簇到纳米微晶。在不同活性位点尺寸的催化剂上,实现了高单产物法拉第效率(FE)以及将CO转化为乙酸盐(在-0.6 V时FE = 90%)、乙醇(在-0.4 V时FE = 92%)和甲酸盐(在-0.6 V时FE = 91%)的低起始电位。通过结构表征、计算建模以及动力学同位素效应研究,阐明了这些高选择性、尺寸调制的主族元素催化剂背后的CO转化机理。