Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Anal Chem. 2024 Apr 16;96(15):5815-5823. doi: 10.1021/acs.analchem.3c04840. Epub 2024 Apr 4.
Microfluidic techniques are widely applied in biomolecular analysis and disease diagnostic assays. While the volume of the sample that is directly used in such assays is often only femto-to microliters, the "dead volume" of solutions supplied in syringes and tubing can be much larger, even up to milliliters, increasing overall reagent use and making analysis significantly more expensive. To reduce the difficulty and cost, we designed a new chip using a low volume solution for analysis and applied it to obtain real-time data for protein-protein interaction measurements. The chip takes advantage of air/aqueous two-phase droplet flow, on-chip rapid mixing within milliseconds, and a droplet capture method, that ultimately requires only 2 μL of reagent solution. The interaction is analyzed by particle diffusometry, a nonintrusive and precise optical detection method to analyze the properties of microparticle diffusion in solution. Herein, we demonstrate on-chip characterization of human immunodeficiency virus p24 antibody-antigen protein binding kinetics imaged via fluorescence microscopy and analyzed by PD. The measured and are 1 × 10 M s and 3.3 × 10 s, respectively, and agree with independent measurement via biolayer interferometry and previously calculated p24-antibody binding kinetics. This new microfluidic chip and the protein-protein interaction analysis method can also be applied in other fields that require low-volume solutions to perform accurate measurement, analysis, and detection.
微流控技术广泛应用于生物分子分析和疾病诊断检测。虽然这些检测中直接使用的样本体积通常只有飞升到微升,但注射器和管道供应的溶液的“死体积”可能要大得多,甚至可达毫升,这增加了整体试剂的使用量,使分析成本显著增加。为了降低难度和成本,我们设计了一种新的芯片,使用小体积溶液进行分析,并将其应用于实时获取蛋白质-蛋白质相互作用测量数据。该芯片利用气/水两相液滴流、芯片内毫秒级快速混合以及液滴捕获方法,最终仅需要 2 μL 的试剂溶液。通过粒子扩散测量法(一种非侵入性且精确的光学检测方法,用于分析溶液中微粒子扩散的特性)来分析相互作用。本文通过荧光显微镜成像和 PD 分析,展示了在芯片上对人类免疫缺陷病毒 p24 抗体-抗原蛋白结合动力学的表征。通过测量得到的 和 分别为 1×10^-6 M s 和 3.3×10^-3 s,与通过生物层干涉测量法和先前计算的 p24-抗体结合动力学得到的结果一致。这种新的微流控芯片和蛋白质-蛋白质相互作用分析方法还可以应用于其他需要小体积溶液进行精确测量、分析和检测的领域。