Arter William E, Levin Aviad, Krainer Georg, Knowles Tuomas P J
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
Biophys Rev. 2020 Apr;12(2):575-585. doi: 10.1007/s12551-020-00679-4. Epub 2020 Apr 8.
Exploration and characterisation of the human proteome is a key objective enabling a heightened understanding of biological function, malfunction and pharmaceutical design. Since proteins typically exhibit their behaviour by binding to other proteins, the challenge of probing protein-protein interactions has been the focus of new and improved experimental approaches. Here, we review recently developed microfluidic techniques for the study and quantification of protein-protein interactions. We focus on methodologies that utilise the inherent strength of microfluidics for the control of mass transport on the micron scale, to facilitate surface and membrane-free interrogation and quantification of interacting proteins. Thus, the microfluidic tools described here provide the capability to yield insights on protein-protein interactions under physiological conditions. We first discuss the defining principles of microfluidics, and methods for the analysis of protein-protein interactions that utilise the diffusion-controlled mixing characteristic of fluids at the microscale. We then describe techniques that employ electrophoretic forces to manipulate and fractionate interacting protein systems for their biophysical characterisation, before discussing strategies that use microdroplet compartmentalisation for the analysis of protein interactions. We conclude by highlighting future directions for the field, such as the integration of microfluidic experiments into high-throughput workflows for the investigation of protein interaction networks.
对人类蛋白质组进行探索和表征是一个关键目标,有助于加深对生物功能、功能失调和药物设计的理解。由于蛋白质通常通过与其他蛋白质结合来展现其行为,探究蛋白质 - 蛋白质相互作用的挑战一直是新型且改良实验方法的重点。在此,我们综述了最近开发的用于研究和定量蛋白质 - 蛋白质相互作用的微流控技术。我们关注那些利用微流控固有优势来控制微米尺度上质量传输的方法,以促进对相互作用蛋白质进行无表面和无膜的检测与定量。因此,这里所描述的微流控工具能够在生理条件下深入了解蛋白质 - 蛋白质相互作用。我们首先讨论微流控的定义原理,以及利用流体在微尺度上扩散控制混合特性来分析蛋白质 - 蛋白质相互作用的方法。然后我们描述采用电泳力来操纵和分离相互作用蛋白质系统以进行生物物理表征的技术,之后再讨论使用微滴分隔来分析蛋白质相互作用的策略。我们通过强调该领域未来的发展方向来作总结,例如将微流控实验整合到高通量工作流程中以研究蛋白质相互作用网络。