Suppr超能文献

嵌入问题的解与对称矩阵的分解

Solution of the embedding problem and decomposition of symmetric matrices.

作者信息

Sippl M J, Scheraga H A

出版信息

Proc Natl Acad Sci U S A. 1985 Apr;82(8):2197-201. doi: 10.1073/pnas.82.8.2197.

Abstract

A solution of the problem of calculating cartesian coordinates from a matrix of interpoint distances (the embedding problem) is reported. An efficient and numerically stable algorithm for the transformation of distances to coordinates is then obtained. It is shown that the embedding problem is intimately related to the theory of symmetric matrices, since every symmetric matrix is related to a general distance matrix by a one-to-one transformation. Embedding of a distance matrix yields a decomposition of the associated symmetric matrix in the form of a sum over outer products of a linear independent system of coordinate vectors. It is shown that such a decomposition exists for every symmetric matrix and that it is numerically stable. From this decomposition, the rank and the numbers of positive, negative, and zero eigenvalues of the symmetric matrix are obtained directly.

摘要

报道了一种从点间距离矩阵计算笛卡尔坐标问题(嵌入问题)的解决方案。随后得到了一种将距离转换为坐标的高效且数值稳定的算法。结果表明,嵌入问题与对称矩阵理论密切相关,因为每个对称矩阵都通过一一变换与一个通用距离矩阵相关联。距离矩阵的嵌入会导致相关对称矩阵以坐标向量线性无关系统的外积之和的形式进行分解。结果表明,每个对称矩阵都存在这样的分解,并且它在数值上是稳定的。从这种分解中,可以直接得到对称矩阵的秩以及正、负和零特征值的数量。

相似文献

1
Solution of the embedding problem and decomposition of symmetric matrices.嵌入问题的解与对称矩阵的分解
Proc Natl Acad Sci U S A. 1985 Apr;82(8):2197-201. doi: 10.1073/pnas.82.8.2197.
2
Note on the stability problem for mammillary matrices.关于乳头状矩阵稳定性问题的注释。
Biophys J. 1969 Nov;9(11):1371-6. doi: 10.1016/S0006-3495(69)86459-3.
4
Cayley-Menger coordinates.凯莱 - 门杰坐标
Proc Natl Acad Sci U S A. 1986 Apr;83(8):2283-7. doi: 10.1073/pnas.83.8.2283.
6
Rank-based decompositions of morphological templates.基于等级的形态模板分解。
IEEE Trans Image Process. 2000;9(8):1420-30. doi: 10.1109/83.855436.
8
The embedding problem for predistance matrices.
Bull Math Biol. 1991;53(5):769-96. doi: 10.1007/BF02461553.
9
Irreducible Cartesian tensor decomposition: A computational approach.
J Chem Phys. 2024 Jun 14;160(22). doi: 10.1063/5.0208846.

引用本文的文献

1
Data smashing: uncovering lurking order in data.数据粉碎:揭示数据中潜藏的秩序。
J R Soc Interface. 2014 Dec 6;11(101):20140826. doi: 10.1098/rsif.2014.0826.
2
3D genome reconstruction from chromosomal contacts.从染色体相互作用重建三维基因组
Nat Methods. 2014 Nov;11(11):1141-3. doi: 10.1038/nmeth.3104. Epub 2014 Sep 21.
3
Distance matrix-based approach to protein structure prediction.基于距离矩阵的蛋白质结构预测方法。
J Struct Funct Genomics. 2009 Mar;10(1):67-81. doi: 10.1007/s10969-009-9062-2. Epub 2009 Feb 18.
5
Cayley-Menger coordinates.凯莱 - 门杰坐标
Proc Natl Acad Sci U S A. 1986 Apr;83(8):2283-7. doi: 10.1073/pnas.83.8.2283.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验