Suppr超能文献

ALIVE 中多重疾病的特征:比较单一聚类方法和集成聚类方法。

Characterizing multimorbidity in ALIVE: comparing single and ensemble clustering methods.

机构信息

Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, United States.

Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States.

出版信息

Am J Epidemiol. 2024 Aug 5;193(8):1146-1154. doi: 10.1093/aje/kwae031.

Abstract

Multimorbidity, defined as having 2 or more chronic conditions, is a growing public health concern, but research in this area is complicated by the fact that multimorbidity is a highly heterogenous outcome. Individuals in a sample may have a differing number and varied combinations of conditions. Clustering methods, such as unsupervised machine learning algorithms, may allow us to tease out the unique multimorbidity phenotypes. However, many clustering methods exist, and choosing which to use is challenging because we do not know the true underlying clusters. Here, we demonstrate the use of 3 individual algorithms (partition around medoids, hierarchical clustering, and probabilistic clustering) and a clustering ensemble approach (which pools different clustering approaches) to identify multimorbidity clusters in the AIDS Linked to the Intravenous Experience cohort study. We show how the clusters can be compared based on cluster quality, interpretability, and predictive ability. In practice, it is critical to compare the clustering results from multiple algorithms and to choose the approach that performs best in the domain(s) that aligns with plans to use the clusters in future analyses.

摘要

多发病,定义为同时患有 2 种或更多种慢性疾病,是一个日益严重的公共卫生问题,但由于多发病是一种高度异质的结果,该领域的研究变得复杂。样本中的个体可能具有不同数量和不同组合的病症。聚类方法,如无监督机器学习算法,可以帮助我们找出独特的多发病表型。然而,存在许多聚类方法,选择使用哪种方法具有挑战性,因为我们不知道真实的潜在聚类。在这里,我们展示了使用 3 种单独的算法(中心点划分、层次聚类和概率聚类)和聚类集成方法(汇集不同聚类方法)来识别艾滋病与静脉内经验队列研究中的多发病聚类。我们展示了如何根据聚类质量、可解释性和预测能力来比较聚类。在实践中,比较来自多种算法的聚类结果并选择在与未来分析中使用聚类相匹配的领域表现最佳的方法至关重要。

相似文献

1
Characterizing multimorbidity in ALIVE: comparing single and ensemble clustering methods.
Am J Epidemiol. 2024 Aug 5;193(8):1146-1154. doi: 10.1093/aje/kwae031.
2
Interventions for improving outcomes in patients with multimorbidity in primary care and community settings.
Cochrane Database Syst Rev. 2016 Mar 14;3(3):CD006560. doi: 10.1002/14651858.CD006560.pub3.
8
Risk of thromboembolism in patients with COVID-19 who are using hormonal contraception.
Cochrane Database Syst Rev. 2023 Jan 9;1(1):CD014908. doi: 10.1002/14651858.CD014908.pub2.
9
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.

本文引用的文献

1
Adverse childhood experiences and comorbidity in a cohort of people who have injected drugs.
BMC Public Health. 2022 May 16;22(1):986. doi: 10.1186/s12889-022-13369-5.
2
Mortality among people who inject drugs: a prospective cohort followed over three decades in Baltimore, MD, USA.
Addiction. 2022 Mar;117(3):646-655. doi: 10.1111/add.15659. Epub 2021 Sep 22.
4
Chronic obstructive pulmonary disease in HIV.
Expert Rev Respir Med. 2021 Jan;15(1):71-87. doi: 10.1080/17476348.2021.1848556. Epub 2020 Nov 23.
5
Prevalence of Multiple Chronic Conditions Among US Adults, 2018.
Prev Chronic Dis. 2020 Sep 17;17:E106. doi: 10.5888/pcd17.200130.
6
Untangling the complexity of multimorbidity with machine learning.
Mech Ageing Dev. 2020 Sep;190:111325. doi: 10.1016/j.mad.2020.111325. Epub 2020 Aug 6.
7
High-risk multimorbidity patterns on the road to cardiovascular mortality.
BMC Med. 2020 Mar 10;18(1):44. doi: 10.1186/s12916-020-1508-1.
8
Healthcare use in patients with multimorbidity.
Eur J Public Health. 2020 Feb 1;30(1):16-22. doi: 10.1093/eurpub/ckz118.
9
The measurement of multimorbidity.
Health Psychol. 2019 Sep;38(9):783-790. doi: 10.1037/hea0000739. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验