Suppr超能文献

可生物降解的聚乳酸-羟基乙酸共聚物纳米颗粒可恢复溶酶体酸度,并保护神经PC-12细胞免受线粒体毒性的影响。

Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity.

作者信息

Zeng Jialiu, Martin Andrew, Han Xue, Shirihai Orian S, Grinstaff Mark W

机构信息

Department of Biomedical Engineering, Boston University, Boston, MA 02215, United States.

Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90045, United States.

出版信息

Ind Eng Chem Res. 2019 Aug 7;58(31):13910-13917. doi: 10.1021/acs.iecr.9b02003. Epub 2019 Jul 16.

Abstract

Exposure of mitochondrial parkinsonian neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) to PC-12 cells results in significant cell death, decreases lysosomal acidity, and inhibits autophagic flux. Biodegradable poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of ≈100 nm diameter localize to the lysosome, degrade, and subsequently release their acidic components to acidify the local lysosomal environment. The performance of PLGA NPs with different lysosomal pH modulating capabilities is investigated in PC-12 cells under MPP+ induced mitochondrial toxicity. PLGA NPs perform in a compositional dependent manner, where NPs with a higher glycolic acid to lactic acid ratio content degrade faster, and yield greater degrees of lysosomal pH modulation as well as autophagic flux modulation in PC-12 cells under MPP+ insult. These results show that slight compositional changes of the polymeric NP give rise to differing degrees of lysosomal acidification in PC-12 cells and afford improved cellular degradative activity.

摘要

将线粒体帕金森神经毒素1-甲基-4-苯基吡啶离子(MPP+)作用于PC-12细胞会导致显著的细胞死亡,降低溶酶体酸度,并抑制自噬通量。直径约100 nm的可生物降解聚乳酸-羟基乙酸共聚物(PLGA)纳米颗粒(NPs)定位于溶酶体,降解并随后释放其酸性成分以酸化局部溶酶体环境。在MPP+诱导的线粒体毒性作用下,研究了具有不同溶酶体pH调节能力的PLGA NPs在PC-12细胞中的性能。PLGA NPs的表现取决于其组成,其中乙醇酸与乳酸比例较高的NPs降解更快,并且在MPP+损伤下的PC-12细胞中产生更大程度的溶酶体pH调节以及自噬通量调节。这些结果表明,聚合物NP的轻微组成变化会在PC-12细胞中引起不同程度的溶酶体酸化,并提供改善的细胞降解活性。

相似文献

1
Biodegradable PLGA nanoparticles restore lysosomal acidity and protect neural PC-12 cells against mitochondrial toxicity.
Ind Eng Chem Res. 2019 Aug 7;58(31):13910-13917. doi: 10.1021/acs.iecr.9b02003. Epub 2019 Jul 16.
2
Degradable Nanoparticles Restore Lysosomal pH and Autophagic Flux in Lipotoxic Pancreatic Beta Cells.
Adv Healthc Mater. 2019 Jun;8(12):e1801511. doi: 10.1002/adhm.201801511. Epub 2019 Jan 30.
3
Mild MPP exposure impairs autophagic degradation through a novel lysosomal acidity-independent mechanism.
J Neurochem. 2016 Oct;139(2):294-308. doi: 10.1111/jnc.13700. Epub 2016 Oct 3.
4
Inhalation of acidic nanoparticles prevents doxorubicin cardiotoxicity through improvement of lysosomal function.
Theranostics. 2023 Oct 2;13(15):5435-5451. doi: 10.7150/thno.86310. eCollection 2023.

引用本文的文献

2
Autolysosomal Dysfunction in Obesity-induced Metabolic Inflammation and Related Disorders.
Curr Obes Rep. 2025 May 14;14(1):43. doi: 10.1007/s13679-025-00638-8.
3
The blood-brain barriers: novel nanocarriers for central nervous system diseases.
J Nanobiotechnology. 2025 Feb 26;23(1):146. doi: 10.1186/s12951-025-03247-8.
4
Reprogramming the melanoma and immunosuppressive myeloid cells with esomeprazole-loaded PLGA nanoparticles.
iScience. 2024 Dec 9;28(1):111559. doi: 10.1016/j.isci.2024.111559. eCollection 2025 Jan 17.
5
Peptide-coated DNA nanostructures as a platform for control of lysosomal function in cells.
Chem Eng J. 2024 Oct 15;498. doi: 10.1016/j.cej.2024.155633. Epub 2024 Sep 12.
8
Nanomedicines via the pulmonary route: a promising strategy to reach the target?
Drug Deliv Transl Res. 2024 Aug;14(8):2276-2297. doi: 10.1007/s13346-024-01590-1. Epub 2024 Apr 8.
10
Dual-Antigen Subunit Vaccine Nanoparticles for Scrub Typhus.
Pathogens. 2023 Nov 25;12(12):1390. doi: 10.3390/pathogens12121390.

本文引用的文献

1
Predoctoral and Postdoctoral Training Pipeline in Translational Biomaterials Research and Regenerative Medicine.
ACS Biomater Sci Eng. 2018 Dec 10;4(12):3919-3926. doi: 10.1021/acsbiomaterials.7b00268. Epub 2017 Oct 2.
2
Novel Approaches for the Treatment of Alzheimer's and Parkinson's Disease.
Int J Mol Sci. 2019 Feb 8;20(3):719. doi: 10.3390/ijms20030719.
3
Degradable Nanoparticles Restore Lysosomal pH and Autophagic Flux in Lipotoxic Pancreatic Beta Cells.
Adv Healthc Mater. 2019 Jun;8(12):e1801511. doi: 10.1002/adhm.201801511. Epub 2019 Jan 30.
5
Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson's disease.
Science. 2017 Sep 22;357(6357):1255-1261. doi: 10.1126/science.aam9080. Epub 2017 Sep 7.
6
Resolvin D1 Attenuates Mpp+-Induced Parkinson Disease via Inhibiting Inflammation in PC12 Cells.
Med Sci Monit. 2017 Jun 2;23:2684-2691. doi: 10.12659/msm.901995.
7
Systematic investigation on the intracellular trafficking network of polymeric nanoparticles.
Nanoscale. 2017 Mar 2;9(9):3269-3282. doi: 10.1039/c7nr00532f.
8
Therapeutic potential of autophagy-enhancing agents in Parkinson's disease.
Mol Neurodegener. 2017 Jan 25;12(1):11. doi: 10.1186/s13024-017-0154-3.
9
Formulation and Interaction of Rhodamine-B Loaded PLGA Nanoparticles with Cardiac Myocytes.
Front Pharmacol. 2016 Dec 6;7:458. doi: 10.3389/fphar.2016.00458. eCollection 2016.
10
Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity.
J Cell Biol. 2016 Jul 4;214(1):25-34. doi: 10.1083/jcb.201511042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验