Suppr超能文献

长链非编码RNA与聚(ADP-核糖)聚合酶-1相互作用,影响碱基切除修复的效率。

Long non-coding RNA interacts with PARP-1 influencing the efficiency of base excision repair.

作者信息

Zuo You, He Jiaqian, Zhou Zheng, Sun Jingjing, Ouyang Can, Huang Hui, Wang Yajuan, Liu Hairong, Reed Simon H

机构信息

College of Biology, Hunan University, Changsha, 410082, PR China.

College of Material Science and Engineering, Hunan University, Changsha, 410082, PR China.

出版信息

Noncoding RNA Res. 2024 Mar 25;9(3):649-658. doi: 10.1016/j.ncrna.2024.03.010. eCollection 2024 Sep.

Abstract

In recent years, various long non-coding RNAs (lncRNAs) involved in DNA damage response (DDR) have been identified and studied to deepen our understanding. However, there are rare reports on the association between lncRNAs and base excision repair (BER). Our designed DNA microarray identified dozens of functionally unknown lncRNAs, and their transcription levels significantly increased upon exposure to DNA damage inducers. One of them, named (Long noncoding RNA Interacts with PARP-1), exhibited a significant alteration in transcription in response to methyl methanesulfonate (MMS) and temozolomide (TMZ) treatments. knockdown or knockout cell lines are sensitive to MMS and TMZ, indicating that plays a crucial role in DDR. The loss or insufficiency of significantly influences the efficiency of BER in human cells, and it suggests that participates in the BER pathway. The interaction between and a key factor in BER, poly (ADP-ribose) polymerase 1 (PARP-1), has been confirmed. We identified and characterized , a lncRNA, which is involved in DDR, significantly influences BER efficiency, and interacts with the BER key factor PARP-1. This advances our understanding of the connection between lncRNAs and BER, presenting the potential for the discovery of new drug targets.

摘要

近年来,人们已经鉴定并研究了多种参与DNA损伤反应(DDR)的长链非编码RNA(lncRNA),以加深我们的理解。然而,关于lncRNA与碱基切除修复(BER)之间关联的报道却很少。我们设计的DNA微阵列鉴定出了数十种功能未知的lncRNA,它们在暴露于DNA损伤诱导剂后转录水平显著增加。其中一种名为(长链非编码RNA与PARP-1相互作用)的lncRNA,在甲磺酸甲酯(MMS)和替莫唑胺(TMZ)处理后转录出现显著变化。敲低或敲除该lncRNA的细胞系对MMS和TMZ敏感,表明其在DDR中起关键作用。该lncRNA的缺失或不足显著影响人类细胞中BER的效率,这表明它参与了BER途径。已经证实了该lncRNA与BER中的关键因子聚(ADP-核糖)聚合酶1(PARP-1)之间的相互作用。我们鉴定并表征了一种参与DDR、显著影响BER效率并与BER关键因子PARP-1相互作用的lncRNA。这加深了我们对lncRNA与BER之间联系的理解,为发现新的药物靶点提供了潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d72/10987297/c8a1d031a870/ga1.jpg

相似文献

1
Long non-coding RNA interacts with PARP-1 influencing the efficiency of base excision repair.
Noncoding RNA Res. 2024 Mar 25;9(3):649-658. doi: 10.1016/j.ncrna.2024.03.010. eCollection 2024 Sep.
3
p21CDKN1A participates in base excision repair by regulating the activity of poly(ADP-ribose) polymerase-1.
DNA Repair (Amst). 2010 Jun 4;9(6):627-35. doi: 10.1016/j.dnarep.2010.02.011. Epub 2010 Mar 19.
4
ALC1/CHD1L, a chromatin-remodeling enzyme, is required for efficient base excision repair.
PLoS One. 2017 Nov 17;12(11):e0188320. doi: 10.1371/journal.pone.0188320. eCollection 2017.
6
Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks.
DNA Repair (Amst). 2008 Jun 1;7(6):932-40. doi: 10.1016/j.dnarep.2008.03.017. Epub 2008 May 12.
10
Hypersensitivity phenotypes associated with genetic and synthetic inhibitor-induced base excision repair deficiency.
DNA Repair (Amst). 2007 Apr 1;6(4):530-43. doi: 10.1016/j.dnarep.2006.10.016. Epub 2006 Nov 20.

引用本文的文献

1
Overcoming temozolomide resistance in glioma: recent advances and mechanistic insights.
Acta Neuropathol Commun. 2025 Jun 5;13(1):126. doi: 10.1186/s40478-025-02046-4.
3
DNA damage response-related ncRNAs as regulators of therapy resistance in cancer.
Front Pharmacol. 2024 Aug 26;15:1390300. doi: 10.3389/fphar.2024.1390300. eCollection 2024.

本文引用的文献

2
and as prognostic biomarkers for multiple myeloma in autologous stem cell transplant.
Haematologica. 2023 Aug 1;108(8):2155-2166. doi: 10.3324/haematol.2022.282399.
4
Mechanism of human Lig1 regulation by PCNA in Okazaki fragment sealing.
Nat Commun. 2022 Dec 20;13(1):7833. doi: 10.1038/s41467-022-35475-z.
5
Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level.
Nat Commun. 2022 Nov 2;13(1):6569. doi: 10.1038/s41467-022-34148-1.
6
RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives.
Front Mol Neurosci. 2022 Jul 26;15:914430. doi: 10.3389/fnmol.2022.914430. eCollection 2022.
7
Transcription coupled base excision repair in mammalian cells: So little is known and so much to uncover.
DNA Repair (Amst). 2021 Nov;107:103204. doi: 10.1016/j.dnarep.2021.103204. Epub 2021 Aug 6.
9
DNA Repair Pathways in Cancer Therapy and Resistance.
Front Pharmacol. 2021 Feb 8;11:629266. doi: 10.3389/fphar.2020.629266. eCollection 2020.
10
Base excision repair and its implications to cancer therapy.
Essays Biochem. 2020 Oct 26;64(5):831-843. doi: 10.1042/EBC20200013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验