Suppr超能文献

采用选择离子流管质谱和机器学习技术对气调包装鲜猪肉进行快速无损微生物质量预测。

Rapid and non-destructive microbial quality prediction of fresh pork stored under modified atmospheres by using selected-ion flow-tube mass spectrometry and machine learning.

机构信息

Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.

Research Unit Food Microbiology and Food Preservation (FMFP), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Research Group NutriFOODchem, Department of Food Technology, Safety and Health, Ghent University, Coupure links 653, 9000 Ghent, Belgium.

出版信息

Meat Sci. 2024 Jul;213:109505. doi: 10.1016/j.meatsci.2024.109505. Epub 2024 Mar 31.

Abstract

Volatile organic compounds (VOCs) indicative of pork microbial spoilage can be quantified rapidly at trace levels using selected-ion flow-tube mass spectrometry (SIFT-MS). Packaging atmosphere is one of the factors influencing VOC production patterns during storage. On this basis, machine learning would help to process complex volatolomic data and predict pork microbial quality efficiently. This study focused on (1) investigating model generalizability based on different nested cross-validation settings, and (2) comparing the predictive power and feature importance of nine algorithms, including Artificial Neural Network (ANN), k-Nearest Neighbors, Support Vector Regression, Decision Tree, Partial Least Squares Regression, and four ensemble learning models. The datasets used contain 37 VOCs' concentrations (input) and total plate counts (TPC, output) of 350 pork samples with different storage times, including 225 pork loin samples stored under three high-O and three low-O conditions, and 125 commercially packaged products. An appropriate choice of cross-validation strategies resulted in trustworthy and relevant predictions. When trained on all possible selections of two high-O and two low-O conditions, ANNs produced satisfactory TPC predictions of unseen test scenarios (one high-O condition, one low-O condition, and the commercial products). ANN-based bagging outperformed other employed models, when TPC exceeded ca. 6 log CFU/g. VOCs including benzaldehyde, 3-methyl-1-butanol, ethanol and methyl mercaptan were identified with high feature importance. This elaborated case study illustrates great prospects of real-time detection techniques and machine learning in meat quality prediction. Further investigations on handling low VOC levels would enhance the model performance and decision making in commercial meat quality control.

摘要

挥发性有机化合物(VOCs)可以指示猪肉微生物腐败,使用选择离子流管质谱(SIFT-MS)可以快速定量检测痕量的此类化合物。包装气氛是影响储存过程中 VOC 产生模式的因素之一。在此基础上,机器学习有助于处理复杂的挥发物组学数据,并有效地预测猪肉微生物质量。本研究重点关注:(1)基于不同嵌套交叉验证设置,研究模型的通用性;(2)比较九种算法的预测能力和特征重要性,包括人工神经网络(ANN)、k-最近邻、支持向量回归、决策树、偏最小二乘回归,以及四种集成学习模型。所使用的数据集包含 37 种 VOC 浓度(输入)和 350 个不同储存时间猪肉样本的总平板计数(TPC,输出),其中包括 225 个储存于三种高氧和三种低氧条件下的猪里脊肉样本,以及 125 个商业包装产品。适当选择交叉验证策略可以得到可靠且相关的预测结果。当基于所有可能的两种高氧和两种低氧条件的选择进行训练时,ANN 可以对未见过的测试场景(一种高氧条件、一种低氧条件和商业产品)进行令人满意的 TPC 预测。当 TPC 超过约 6 log CFU/g 时,基于 ANN 的袋装方法优于其他使用的模型。包括苯甲醛、3-甲基-1-丁醇、乙醇和甲硫醇在内的 VOCs 被鉴定为具有高特征重要性的化合物。本案例研究详细说明了实时检测技术和机器学习在肉类质量预测中的广阔前景。进一步研究处理低 VOC 水平的方法将提高模型性能,并在商业肉类质量控制中做出更好的决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验