Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America.
Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, United States of America.
Exp Neurol. 2024 Jun;376:114771. doi: 10.1016/j.expneurol.2024.114771. Epub 2024 Apr 4.
Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.
帕金森病(PD)啮齿动物模型提供了对黑质纹状体多巴胺(DA)信号与运动功能之间关系的深入了解。尽管基于毒素的大鼠模型产生了明显的黑质纹状体神经元丢失,最终导致 PD 样运动功能下降,但神经元丢失的快速性可能无法充分转化为运动前的特征,例如认知能力下降。不幸的是,像 Pink1 敲除(KO)大鼠这样的啮齿动物遗传 PD 模型,通常无法复制纹状体 DA 和酪氨酸羟化酶(TH)丢失以及运动迟缓表型的差异严重程度,这些表型类似于人类 PD。为了阐明这种不一致性,我们评估了衰老作为影响运动和非运动认知障碍进展的因素。在一个队列中,我们从 3 个月到 16 个月龄对雄性 Pink1 KO 和年龄匹配的野生型(WT)大鼠进行了纵向研究,并在另一个队列中对年轻成年(6-7 个月)和老年(18-19 个月)大鼠进行了横断面研究。年轻成年的 Pink1 KO 大鼠表现出与黑质(SN)中多巴胺(DA)和酪氨酸羟化酶(TH)升高相关的多动行为,而在老年 KO 大鼠中,这些物质在 SN 中减少,但在纹状体中没有减少。此外,在老年 KO 大鼠的前额皮质(PFC)中去甲肾上腺素水平下降,而年轻和老年 KO 大鼠的 DA 水平升高。尽管家族性 PD 的发病年龄较小,但我们的结果强调了考虑与年龄相关因素的必要性。此外,研究结果表明,可能存在代偿机制来维持运动功能,这表现在早期生命中 SN 中的 DA 增加,以应对 Pink1 功能缺陷,而这种功能缺陷随着衰老和运动功能下降的出现而下降。