Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany.
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Zahnklinik 1 - Zahnerhaltung und Parodontologie, Forschungslabor für dentale Biomaterialien, Glueckstrasse 11, 91054 Erlangen, Germany.
Dent Mater. 2024 May;40(5):842-857. doi: 10.1016/j.dental.2024.03.006. Epub 2024 Apr 5.
Lithium silicate-based glass ceramics have evolved as a paramount restorative material in restorative and prosthetic dentistry, exhibiting outstanding esthetic and mechanical performance. Along with subtractive machining techniques, this material class has conquered the market and satisfied the patients' needs for a long-lasting, excellent, and metal-free alternative for single tooth replacements and even smaller bridgework. Despite the popularity, not much is known about the material chemistry, microstructure and terminal behaviour.
This article combines a set of own experimental data with extensive review of data from literature and other resources. Starting at manufacturer claims on unique selling propositions, properties, and microstructural features, the aim is to validate those claims, based on glass science. Deep knowledge is mandatory for understanding the microstructure evolution during the glass ceramic process.
Fundamental glass characteristics have been addressed, leading to formation of time-temperature-transformation (TTT) diagrams, which are the basis for kinetic description of the glass ceramic process. Nucleation and crystallization kinetics are outlined in this contribution as well as analytical methods to describe the crystalline fraction and composition qualitatively and quantitatively. In relation to microstructure, the mechanical performance of lithium silicate-based glass ceramics has been investigated with focus on fracture strength versus fracture toughness as relevant clinical predictors.
Fracture toughness has been found to be a stronger link to initially outlined manufacturer claims, and to more precisely match ISO recommendations for clinical indications.
硅酸锂基玻璃陶瓷作为一种主要的修复材料,在修复和修复学中得到了发展,具有出色的美观和机械性能。随着减法加工技术的发展,这种材料已经征服了市场,并满足了患者对持久、优质、无金属替代品的需求,适用于单颗牙齿修复甚至更小的桥体修复。尽管这种材料非常受欢迎,但人们对其材料化学、微观结构和最终行为知之甚少。
本文结合了一组自己的实验数据和广泛的文献和其他资源的数据综述。从制造商对独特销售主张、性能和微观结构特征的声明开始,旨在基于玻璃科学验证这些声明。深入了解微观结构演变对于理解玻璃陶瓷工艺至关重要。
本文探讨了基本的玻璃特性,得出了时间-温度-转变(TTT)图,这是玻璃陶瓷工艺动力学描述的基础。本文还概述了成核和结晶动力学,以及用于定性和定量描述晶体分数和组成的分析方法。在微观结构方面,本文研究了基于硅酸锂的玻璃陶瓷的机械性能,重点是断裂强度与断裂韧性作为相关的临床预测指标。
断裂韧性与最初提出的制造商声明有更强的联系,并更准确地符合 ISO 对临床适应症的建议。