Chu Liang, Guo Junzhen, Wang Zhaokun, Yang Haibin, Liu Zhaohui, Huang Zhi, Wang Liyan, Yang Mu, Wang Ge
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
J Hazard Mater. 2024 May 5;469:133886. doi: 10.1016/j.jhazmat.2024.133886. Epub 2024 Feb 29.
Oxidative desulfurization (ODS) emerges as a critical player in enhancing efficient fuel desulfurization and promoting sustainable clean energy. Metal-organic frameworks (MOFs) show great potential as ODS catalysts because of their exceptional porosity and versatility. This study explores the use of amorphous metal-organic frameworks (aMOFs), which combine MOFs' structural advantages with unique properties of amorphous materials, to enhance catalytic efficiency in ODS. Traditional methods for synthesizing MOFs rely on solvent-thermal or solvent-free methods, each with limitations in environmental impact or scalability. To address this, we introduce a novel strategy utilizing a small quantity of benzoic acid (BA) modifier to facilitate the solvent-free, one-pot, mechanical synthesis of amorphous zirconium terephthalate (GU-2BA-3h). The resulting GU-2BA-3h demonstrates exceptional ODS performance, efficiently removing 1000 ppm of dibenzothiophene (DBT) in just 6 min at 60 °C. Amorphous GU-2BA-3h features an expanded external surface area, increased acidic sites, and exceptional stability, resulting in a high turnover frequency (19.6 h) and outstanding catalytic activity (53.2 mmol g h), establishing it as a highly efficient ODS catalyst. This remarkable performance arises from the formation of dangling carboxyl groups and active metal sites due to the competitive coordination of benzoic acid with the linker. Experimental evidence confirms that these carboxyl groups and exposed Zr-OH sites interact with oxidants, generating hydroxyl radicals that effectively eliminate sulfur-containing compounds. Furthermore, the methodology exhibits universality in constructing amorphous Zr-based MOFs, and provides an eco-friendly, cost-effective route for efficient ODS catalyst production.
氧化脱硫(ODS)在提高燃料脱硫效率和促进可持续清洁能源发展方面发挥着关键作用。金属有机框架材料(MOFs)因其独特的孔隙率和多功能性,在ODS催化剂方面展现出巨大潜力。本研究探索使用非晶态金属有机框架材料(aMOFs),它将MOFs的结构优势与非晶态材料的独特性能相结合,以提高ODS中的催化效率。传统的MOFs合成方法依赖于溶剂热法或无溶剂法,每种方法在环境影响或可扩展性方面都存在局限性。为了解决这一问题,我们引入了一种新颖的策略,利用少量苯甲酸(BA)改性剂促进无溶剂、一锅法机械合成非晶态对苯二甲酸锆(GU-2BA-3h)。所得的GU-2BA-3h表现出卓越的ODS性能,在60℃下仅6分钟就能有效去除1000 ppm的二苯并噻吩(DBT)。非晶态GU-2BA-3h具有扩大的外表面积、增加的酸性位点和出色的稳定性,导致高周转频率(19.6 h)和出色的催化活性(53.2 mmol g h),使其成为一种高效的ODS催化剂。这种卓越的性能源于苯甲酸与连接体的竞争配位导致的悬空羧基和活性金属位点的形成。实验证据证实,这些羧基和暴露的Zr-OH位点与氧化剂相互作用,产生能有效消除含硫化合物的羟基自由基。此外,该方法在构建非晶态Zr基MOFs方面具有通用性,并为高效ODS催化剂的生产提供了一种环保、经济高效的途径。