Suppr超能文献

蛋白质在共价标记-质谱法中可以承受更广泛的标记,同时提供准确的结构信息。

Proteins Can Withstand More Extensive Labeling while Providing Accurate Structural Information in Covalent Labeling-Mass Spectrometry.

机构信息

Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.

出版信息

J Am Soc Mass Spectrom. 2024 May 1;35(5):1030-1039. doi: 10.1021/jasms.4c00043. Epub 2024 Apr 6.

Abstract

Diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry (CL-MS) has been extensively utilized to study protein structure and interactions owing to its ease of use, commercial availability, and broad labeling of nucleophilic residues. During typical CL-MS experiments with DEPC, the extent of labeling is kept low to avoid any structural perturbations resulting from covalent modification of the protein. In this study, we demonstrate that proteins can be labeled more extensively via DEPC and still provide accurate structural information. To show this, we modeled labeling kinetics over a range of DEPC concentrations and used molecular dynamics simulations to investigate the molecular-level effects of extensive labeling on the protein structure. Our results indicate that higher extents of DEPC labeling do not significantly perturb the protein structure and can lead to improved precision, detectability of labeled peptides, and protein structural resolution. Furthermore, higher extents of labeling enable better identification of protein-ligand binding sites where lower extents of modification provide ambiguous results.

摘要

焦碳酸二乙酯(DEPC)共价标记-质谱(CL-MS)由于其使用方便、商业可用性以及对亲核残基的广泛标记,已被广泛用于研究蛋白质结构和相互作用。在典型的 DEPC CL-MS 实验中,保持低标记程度以避免由于蛋白质的共价修饰而导致的任何结构扰动。在本研究中,我们证明了通过 DEPC 可以更广泛地标记蛋白质,并且仍然可以提供准确的结构信息。为了证明这一点,我们在一系列 DEPC 浓度下模拟了标记动力学,并使用分子动力学模拟研究了广泛标记对蛋白质结构的分子水平影响。我们的结果表明,更高程度的 DEPC 标记不会显著扰乱蛋白质结构,并可以提高标记肽的精度、可检测性和蛋白质结构分辨率。此外,更高程度的标记可以更好地识别蛋白质-配体结合位点,而较低程度的修饰会提供模糊的结果。

相似文献

1
Proteins Can Withstand More Extensive Labeling while Providing Accurate Structural Information in Covalent Labeling-Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 May 1;35(5):1030-1039. doi: 10.1021/jasms.4c00043. Epub 2024 Apr 6.
2
Higher-Order Structure Influences the Kinetics of Diethylpyrocarbonate Covalent Labeling of Proteins.
J Am Soc Mass Spectrom. 2020 Mar 4;31(3):658-665. doi: 10.1021/jasms.9b00132. Epub 2020 Jan 27.
6
Diethylpyrocarbonate-Based Covalent Labeling Mass Spectrometry of Protein Interactions in a Membrane Complex System.
J Am Soc Mass Spectrom. 2023 Jan 4;34(1):82-91. doi: 10.1021/jasms.2c00262. Epub 2022 Dec 7.
7
Investigating Protein-Nucleic Acid Binding Interactions with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2272-2275. doi: 10.1021/jasms.4c00285. Epub 2024 Aug 29.
9
Synergistic Structural Information from Covalent Labeling and Hydrogen-Deuterium Exchange Mass Spectrometry for Protein-Ligand Interactions.
Anal Chem. 2019 Dec 3;91(23):15248-15254. doi: 10.1021/acs.analchem.9b04257. Epub 2019 Nov 12.
10
Protein-Ligand Affinity Determinations Using Covalent Labeling-Mass Spectrometry.
J Am Soc Mass Spectrom. 2020 Jul 1;31(7):1544-1553. doi: 10.1021/jasms.0c00131. Epub 2020 Jun 22.

引用本文的文献

2
Investigating Protein-Nucleic Acid Binding Interactions with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry.
J Am Soc Mass Spectrom. 2024 Oct 2;35(10):2272-2275. doi: 10.1021/jasms.4c00285. Epub 2024 Aug 29.
4
Evaluating Chemical Footprinting-Induced Perturbation of Protein Higher Order Structure.
Anal Chem. 2024 Jun 11;96(23):9693-9703. doi: 10.1021/acs.analchem.4c01735. Epub 2024 May 30.

本文引用的文献

2
Membrane Protein Binding Interactions Studied in Live Cells via Diethylpyrocarbonate Covalent Labeling Mass Spectrometry.
Anal Chem. 2023 May 9;95(18):7178-7185. doi: 10.1021/acs.analchem.2c05616. Epub 2023 Apr 27.
3
Diethylpyrocarbonate-Based Covalent Labeling Mass Spectrometry of Protein Interactions in a Membrane Complex System.
J Am Soc Mass Spectrom. 2023 Jan 4;34(1):82-91. doi: 10.1021/jasms.2c00262. Epub 2022 Dec 7.
4
Covalent Labeling-Mass Spectrometry Provides a Molecular Understanding of Noncovalent Polymer-Protein Complexation.
ACS Biomater Sci Eng. 2022 Jun 13;8(6):2489-2499. doi: 10.1021/acsbiomaterials.2c00125. Epub 2022 May 24.
5
Epitope Mapping with Diethylpyrocarbonate Covalent Labeling-Mass Spectrometry.
Anal Chem. 2022 Jan 18;94(2):1052-1059. doi: 10.1021/acs.analchem.1c04038. Epub 2021 Dec 21.
6
Diethylpyrocarbonate Footprints a Membrane Protein in Micelles.
J Am Soc Mass Spectrom. 2021 Nov 3;32(11):2636-2643. doi: 10.1021/jasms.1c00172. Epub 2021 Oct 19.
9
Complementary Structural Information for Stressed Antibodies from Hydrogen-Deuterium Exchange and Covalent Labeling Mass Spectrometry.
J Am Soc Mass Spectrom. 2021 May 5;32(5):1237-1248. doi: 10.1021/jasms.1c00072. Epub 2021 Apr 22.
10
Protein-Ligand Affinity Determinations Using Covalent Labeling-Mass Spectrometry.
J Am Soc Mass Spectrom. 2020 Jul 1;31(7):1544-1553. doi: 10.1021/jasms.0c00131. Epub 2020 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验