Institute of Chemical Sciences Bahauddin Zakariya University, Multan 60800, Punjab Pakistan.
Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad, 45650 Pakistan.
Water Res. 2024 Jun 1;256:121526. doi: 10.1016/j.watres.2024.121526. Epub 2024 Apr 2.
The presence of Ag(I) and Pb(II) ions in wastewater poses a significant threat to human health in contemporary times. This study aims to explore the development of a novel and economical adsorbent by grafting MnO particles onto low-rank coal, providing an innovative solution for the remediation of water contaminated with silver and lead. The synthesized nanocomposites, referred to as MnO-Coal, underwent thorough characterization using FTIR, XRD, BET, and SEM to highlight the feasibility of in-situ surface modification of coal with MnO nanoparticles. The adsorption of Ag(I) and Pb(II) from their respective aqueous solution onto MnO-Coal was systematically investigated, with optimization of key parameters such as pH, temperature, initial concentration, contact time, ionic strength, and competing ions. Remarkably adsorption equilibrium was achieved within a 10 min, resulting in impressive removal rates of 80-90 % for both Ag(I) and Pb(II) at pH 6. The experimental data were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir isotherm model proved to be more accurate in representing the adsorption of Ag(I) and Pb(II) ions onto MnO-Coal, exhibiting high regression coefficients (R = 0.99) and maximum adsorption capacities of 93.57 and 61.98 mg/g, along with partition coefficients of 4.53 and 71.92 L/g for Ag(I) and Pb(II), respectively, at 293 K. Kinetic assessments employing PFO, PSO, Elovich, and IPD models indicated that the PFO and PSO models were most suitable for adsorption mechanism of Pb(II) and Ag(I) on MnO-Coal composites, respectively. Moreover, thermodynamic evaluation revealed the spontaneous and endothermic adsorption process for Ag(I), while exothermic behavior for adsorption of Pb(II). Importantly, this approach not only demonstrates cost-effectiveness but also environmental friendliness in treating heavy metal-contamination in water. The research suggests the potential of MnO-Coal composites as efficient and sustainable adsorbents for water purification applications.
当今,废水中存在的 Ag(I) 和 Pb(II) 离子对人类健康构成了重大威胁。本研究旨在探索通过将 MnO 颗粒接枝到低阶煤上来开发一种新型且经济的吸附剂,为银和铅污染水的修复提供创新解决方案。所合成的纳米复合材料,称为 MnO-Coal,经过 FTIR、XRD、BET 和 SEM 的全面表征,突出了 MnO 纳米颗粒原位表面修饰煤的可行性。系统研究了 MnO-Coal 从各自的水溶液中吸附 Ag(I) 和 Pb(II) 的情况,优化了 pH、温度、初始浓度、接触时间、离子强度和竞争离子等关键参数。令人瞩目的是,在 10 分钟内达到吸附平衡,在 pH 6 时对 Ag(I) 和 Pb(II) 的去除率分别达到 80-90%。实验数据采用 Langmuir、Freundlich 和 Temkin 等温模型进行评估。Langmuir 等温模型被证明更能准确地表示 Ag(I) 和 Pb(II) 离子在 MnO-Coal 上的吸附,具有较高的回归系数(R=0.99)和最大吸附容量分别为 93.57 和 61.98mg/g,以及分配系数分别为 4.53 和 71.92L/g,在 293K 时用于 Ag(I) 和 Pb(II)。采用 PFO、PSO、Elovich 和 IPD 模型进行动力学评估表明,PFO 和 PSO 模型分别最适合 MnO-Coal 复合材料对 Pb(II) 和 Ag(I) 的吸附机制。此外,热力学评估表明 Ag(I) 的吸附是自发和吸热的过程,而 Pb(II) 的吸附则是放热的。重要的是,这种方法不仅在处理水中重金属污染方面具有成本效益,而且具有环境友好性。该研究表明,MnO-Coal 复合材料作为水净化应用的高效可持续吸附剂具有潜力。