Suppr超能文献

微曝气促进挥发性硅氧烷转化为甲烷和更简单的单体产物。

Microaeration promotes volatile siloxanes conversion to methane and simpler monomeric products.

作者信息

Ortiz-Ardila A E, Celis C, Usack J G, Angenent L T, Labatut R A

机构信息

Environmental Biotechnology Group, Department of Geosciences, University of Tübingen, Tübingen, Germany; Department of Hydraulic and Environmental Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile.

Environmental Technology and Materials Centre, Department of Chemistry, Pontificia Universidad Javeriana, Bogotá, Colombia.

出版信息

Bioresour Technol. 2024 May;400:130673. doi: 10.1016/j.biortech.2024.130673. Epub 2024 Apr 5.

Abstract

The ubiquitous use of volatile siloxanes in a myriad of product formulations has led to a widespread distribution of these persistent contaminants in both natural ecosystems and wastewater treatment plants. Microbial degradation under microaerobic conditions is a promising approach to mitigate D4 and D5 siloxanes while recovering energy in wastewater treatment plants. This study examined D4/D5 siloxanes biodegradation under both anaerobic and microaerobic conditions ( [Formula: see text]  = 0, 1, 3 %) using wastewater sludge. Results show that the use of microaeration in an otherwise strictly anaerobic environment significantly enhances siloxane conversion to methane. 16S rRNA gene sequencing identified potential degraders, including Clostridium lituseburense, Clostridium bifermentans and Synergistales species. Furthermore, chemical analysis suggested a stepwise siloxane conversion preceding methanogenesis under microaerobic conditions. This study demonstrates the feasibility of microaerobic siloxane biodegradation, laying groundwork for scalable removal technologies in wastewater treatment plants, ultimately highlighting the importance of using bio-based approaches in tackling persistent pollutants.

摘要

挥发性硅氧烷在众多产品配方中的广泛使用,导致这些持久性污染物在自然生态系统和污水处理厂中广泛分布。在微需氧条件下进行微生物降解是一种很有前景的方法,可在污水处理厂中减少D4和D5硅氧烷的同时回收能量。本研究使用废水污泥,考察了在厌氧和微需氧条件下([公式:见正文] = 0、1、3%)D4/D5硅氧烷的生物降解情况。结果表明,在原本严格厌氧的环境中使用微曝气可显著提高硅氧烷转化为甲烷的效率。16S rRNA基因测序确定了潜在的降解菌,包括李氏梭菌、双发酵梭菌和互营杆菌目菌种。此外,化学分析表明,在微需氧条件下,硅氧烷在产甲烷之前会逐步转化。本研究证明了微需氧条件下硅氧烷生物降解的可行性,为污水处理厂可扩展的去除技术奠定了基础,最终突出了使用基于生物的方法处理持久性污染物的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验