Suppr超能文献

洞察显而易见之事的艺术:单细胞数据的二维嵌入确实有意义。

The art of seeing the elephant in the room: 2D embeddings of single-cell data do make sense.

作者信息

Lause Jan, Kobak Dmitry, Berens Philipp

出版信息

bioRxiv. 2024 Jul 31:2024.03.26.586728. doi: 10.1101/2024.03.26.586728.

Abstract

A recent paper in (Chari and Pachter, 2023) claimed that -SNE and UMAP embeddings of single-cell datasets fail to capture true biological structure. The authors argued that such embeddings are as arbitrary and as misleading as forcing the data into an elephant shape. Here we show that this conclusion was based on inadequate and limited metrics of embedding quality. More appropriate metrics quantifying neighborhood and class preservation reveal the elephant in the room: while -SNE and UMAP embeddings of single-cell data do not preserve high-dimensional distances, they can nevertheless provide biologically relevant information.

摘要

最近发表在(查里和帕奇特,2023年)的一篇论文声称,单细胞数据集的t-SNE和UMAP嵌入无法捕捉到真正的生物学结构。作者认为,这种嵌入与将数据强制塑造成大象形状一样任意且具有误导性。在这里,我们表明这一结论是基于对嵌入质量的不充分和有限的度量。更合适的量化邻域和类别保留的度量揭示了问题所在:虽然单细胞数据的t-SNE和UMAP嵌入不能保留高维距离,但它们仍然可以提供生物学相关信息。

相似文献

1
The art of seeing the elephant in the room: 2D embeddings of single-cell data do make sense.
bioRxiv. 2024 Jul 31:2024.03.26.586728. doi: 10.1101/2024.03.26.586728.
2
The art of seeing the elephant in the room: 2D embeddings of single-cell data do make sense.
PLoS Comput Biol. 2024 Oct 2;20(10):e1012403. doi: 10.1371/journal.pcbi.1012403. eCollection 2024 Oct.
5
Predicting User Preferences of Dimensionality Reduction Embedding Quality.
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):745-755. doi: 10.1109/TVCG.2022.3209449. Epub 2022 Dec 16.
6
A generalization of t-SNE and UMAP to single-cell multimodal omics.
Genome Biol. 2021 May 3;22(1):130. doi: 10.1186/s13059-021-02356-5.
7
Shape-aware stochastic neighbor embedding for robust data visualisations.
BMC Bioinformatics. 2022 Nov 14;23(1):477. doi: 10.1186/s12859-022-05028-8.
9
Deconfounded Dimension Reduction via Partial Embeddings.
bioRxiv. 2023 Jan 11:2023.01.10.523448. doi: 10.1101/2023.01.10.523448.
10
Conditional t-SNE: more informative t-SNE embeddings.
Mach Learn. 2021;110(10):2905-2940. doi: 10.1007/s10994-020-05917-0. Epub 2020 Dec 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验