Gene Center, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 25, Munich, Germany.
Genome Biol. 2021 May 3;22(1):130. doi: 10.1186/s13059-021-02356-5.
Emerging single-cell technologies profile multiple types of molecules within individual cells. A fundamental step in the analysis of the produced high-dimensional data is their visualization using dimensionality reduction techniques such as t-SNE and UMAP. We introduce j-SNE and j-UMAP as their natural generalizations to the joint visualization of multimodal omics data. Our approach automatically learns the relative contribution of each modality to a concise representation of cellular identity that promotes discriminative features but suppresses noise. On eight datasets, j-SNE and j-UMAP produce unified embeddings that better agree with known cell types and that harmonize RNA and protein velocity landscapes.
新兴的单细胞技术可以在单个细胞内对多种类型的分子进行分析。在分析产生的高维数据时,一个基本步骤是使用降维技术(如 t-SNE 和 UMAP)对其进行可视化。我们引入了 j-SNE 和 j-UMAP,作为联合可视化多模态组学数据的自然推广。我们的方法自动学习每个模态对细胞身份简洁表示的相对贡献,从而促进具有判别力的特征并抑制噪声。在八个数据集上,j-SNE 和 j-UMAP 生成了一致的嵌入,这些嵌入与已知的细胞类型更一致,并且协调了 RNA 和蛋白质速度景观。