Butzin-Dozier Zachary, Ji Yunwen, Coyle Jeremy, Malenica Ivana, McQuade Elizabeth T Rogawski, Grembi Jessica Anne, Platts-Mills James A, Houpt Eric R, Graham Jay P, Ali Shahjahan, Rahman Md Ziaur, Alauddin Mohammad, Famida Syeda L, Akther Salma, Hossen Md Saheen, Mutsuddi Palash, Shoab Abul K, Rahman Mahbubur, Islam Md Ohedul, Miah Rana, Taniuchi Mami, Liu Jie, Alauddin Sarah, Stewart Christine P, Luby Stephen P, Colford John M, Hubbard Alan E, Mertens Andrew N, Lin Audrie
School of Public Health, University of California, Berkeley, Berkeley, CA USA.
Rollins School of Public Health, Emory University, Atlanta, GA USA.
medRxiv. 2024 Mar 26:2024.03.21.24304684. doi: 10.1101/2024.03.21.24304684.
Water, sanitation, hygiene (WSH), nutrition (N), and combined (N+WSH) interventions are often implemented by global health organizations, but WSH interventions may insufficiently reduce pathogen exposure, and nutrition interventions may be modified by environmental enteric dysfunction (EED), a condition of increased intestinal permeability and inflammation. This study investigated the heterogeneity of these treatments' effects based on individual pathogen and EED biomarker status with respect to child linear growth.
We applied cross-validated targeted maximum likelihood estimation and super learner ensemble machine learning to assess the conditional treatment effects in subgroups defined by biomarker and pathogen status. We analyzed treatment (N+WSH, WSH, N, or control) randomly assigned in-utero, child pathogen and EED data at 14 months of age, and child LAZ at 28 months of age. We estimated the difference in mean child length for age Z-score (LAZ) under the treatment rule and the difference in stratified treatment effect (treatment effect difference) comparing children with high versus low pathogen/biomarker status while controlling for baseline covariates.
We analyzed data from 1,522 children, who had median LAZ of -1.56. We found that myeloperoxidase (N+WSH treatment effect difference 0.0007 LAZ, WSH treatment effect difference 0.1032 LAZ, N treatment effect difference 0.0037 LAZ) and infection (N+WSH treatment effect difference 0.0011 LAZ, WSH difference 0.0119 LAZ, N difference 0.0255 LAZ) were associated with greater effect of all interventions on growth. In other words, children with high myeloperoxidase or infection experienced a greater impact of the interventions on growth. We found that a treatment rule that assigned the N+WSH (LAZ difference 0.23, 95% CI (0.05, 0.41)) and WSH (LAZ difference 0.17, 95% CI (0.04, 0.30)) interventions based on EED biomarkers and pathogens increased predicted child growth compared to the randomly allocated intervention.
These findings indicate that EED biomarker and pathogen status, particularly and myeloperoxidase (a measure of gut inflammation), may be related to impact of N+WSH, WSH, and N interventions on child linear growth.
水、环境卫生、个人卫生(WSH)、营养(N)以及综合(N+WSH)干预措施通常由全球卫生组织实施,但WSH干预措施可能无法充分减少病原体暴露,而营养干预措施可能会因环境性肠道功能障碍(EED,一种肠道通透性增加和炎症加剧的状况)而受到影响。本研究基于个体病原体和EED生物标志物状态,针对儿童线性生长情况,调查了这些治疗方法效果的异质性。
我们应用交叉验证的靶向最大似然估计和超级学习器集成机器学习,来评估由生物标志物和病原体状态定义的亚组中的条件治疗效果。我们分析了在子宫内随机分配的治疗(N+WSH、WSH、N或对照)、儿童14个月大时的病原体和EED数据,以及儿童28个月大时的身长别年龄Z评分(LAZ)。我们估计了治疗规则下儿童年龄别身长Z评分(LAZ)均值的差异,以及在控制基线协变量的同时,比较高病原体/生物标志物状态与低病原体/生物标志物状态儿童的分层治疗效果差异(治疗效果差异)。
我们分析了1522名儿童的数据,他们的LAZ中位数为-1.56。我们发现髓过氧化物酶(N+WSH治疗效果差异为0.0007 LAZ,WSH治疗效果差异为0.1032 LAZ,N治疗效果差异为0.0037 LAZ)和感染(N+WSH治疗效果差异为0.0011 LAZ,WSH差异为0.0119 LAZ,N差异为0.0255 LAZ)与所有干预措施对生长的更大效果相关。换句话说,髓过氧化物酶水平高或感染的儿童,干预措施对其生长的影响更大。我们发现,与随机分配的干预措施相比,基于EED生物标志物和病原体分配N+WSH(LAZ差异为0.23,95%置信区间(0.05,0.41))和WSH(LAZ差异为0.17,95%置信区间(0.04,0.30))干预措施的治疗规则,可提高预测的儿童生长水平。
这些发现表明,EED生物标志物和病原体状态,特别是感染和髓过氧化物酶(肠道炎症的一种度量),可能与N+WSH、WSH和N干预措施对儿童线性生长的影响有关。