Afreen Sadia, Krohannon Alexander, Purkayastha Saptarshi, Janga Sarath Chandra
Department of BioHealth Informatics, Indiana University - Purdue University Indianapolis, Indianapolis, 46202, IN, USA.
Res Sq. 2024 Mar 29:rs.3.rs-4132507. doi: 10.21203/rs.3.rs-4132507/v1.
Good science necessitates diverse perspectives to guide its progress. This study introduces Datawiz-IN, an educational initiative that fosters diversity and inclusion in AI skills training and research. Supported by a National Institutes of Health R25 grant from the National Library of Medicine, Datawiz-IN provided a comprehensive data science and machine learning research experience to students from underrepresented minority groups in medicine and computing.
The program evaluation triangulated quantitative and qualitative data to measure representation, innovation, and experience. Diversity gains were quantified using demographic data analysis. Computational projects were systematically reviewed for research productivity. A mixed-methods survey gauged participant perspectives on skills gained, support quality, challenges faced, and overall sentiments.
The first cohort of 14 students in Summer 2023 demonstrated quantifiable increases in representation, with greater participation of women and minorities, evidencing the efficacy of proactive efforts to engage talent typically excluded from these fields. The student interns conducted innovative projects that elucidated disease mechanisms, enhanced clinical decision support systems, and analyzed health disparities.
By illustrating how purposeful inclusion catalyzes innovation, Datawiz-IN offers a model for developing AI systems and research that reflect true diversity. Realizing the full societal benefits of AI requires sustaining pathways for historically excluded voices to help shape the field.
优秀的科学需要多元的观点来引领其发展。本研究介绍了Datawiz-IN,这是一项教育倡议,旨在促进人工智能技能培训和研究中的多样性与包容性。在国立医学图书馆提供的美国国立卫生研究院R25资助下,Datawiz-IN为医学和计算机领域中代表性不足的少数群体的学生提供了全面的数据科学和机器学习研究体验。
项目评估采用定量和定性数据相结合的方式,以衡量代表性、创新性和体验。通过人口数据分析对多样性的提升进行量化。对计算项目进行系统审查以评估研究生产力。一项混合方法调查评估了参与者对所获得技能、支持质量、面临的挑战以及总体感受的看法。
2023年夏季的首批14名学生展示了在代表性方面可量化的增长,女性和少数群体的参与度更高,证明了积极努力吸引通常被排除在这些领域之外的人才的有效性。学生实习生开展了创新性项目,阐明了疾病机制,增强了临床决策支持系统,并分析了健康差异。
通过说明有目的的包容性如何催化创新,Datawiz-IN提供了一个开发反映真正多样性的人工智能系统和研究的模型。要实现人工智能的全部社会效益,需要为历史上被排除在外的声音提供持续的途径,以帮助塑造该领域。