Suppr超能文献

美国学术科技培训中不同种族和族裔代表性的漏洞管道,2003-2019 年。

The leaky pipeline of diverse race and ethnicity representation in academic science and technology training in the United States, 2003-2019.

机构信息

Department of Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, United States of America.

Division of Cardiovascular Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America.

出版信息

PLoS One. 2023 Apr 26;18(4):e0284945. doi: 10.1371/journal.pone.0284945. eCollection 2023.

Abstract

INTRODUCTION

Diverse race and ethnicity representation remains lacking in science and technology (S&T) careers in the United States (US). Due to systematic barriers across S&T training stages, there may be sequential loss of diverse representation leading to low representation, often conceptualized as a leaky pipeline. We aimed to quantify the contemporary leaky pipeline of S&T training in the US.

METHODS

We analyzed US S&T degree data, stratified by sex and then by race or ethnicity, obtained from survey data the National Science Foundation and the National Center for Science and Engineering Statistics. We assessed changes in race and ethnicity representation in 2019 at two major S&T transition points: bachelor to doctorate degrees (2003-2019) and doctorate degrees to postdoctoral positions (2010-2019). We quantified representation changes at each point as the ratio of representation in the later stage to earlier stage (representation ratio [RR]). We assessed secular trends in the representation ratio through univariate linear regression.

RESULTS

For 2019, the survey data included for bachelor degrees, 12,714,921 men and 10.612,879 women; for doctorate degrees 14,259 men and 12,860 women; and for postdoctoral data, 11,361 men and 8.672 women. In 2019, we observed that Black, Asian, and Hispanic women had comparable loss of representation among women in the bachelor to doctorate transition (RR 0.86, 95% confidence interval [CI] 0.81-0.92; RR 0.85, 95% CI 0.81-0.89; and RR 0.82, 95% CI 0.77-0.87, respectively), while among men, Black and Asian men had the greatest loss of representation (Black men RR 0.72, 95% CI 0.66-0.78; Asian men RR 0.73, 95% CI 0.70-0.77)]. We observed that Black men (RR 0.60, 95% CI 0.51-0.69) and Black women (RR 0.56, 95% CI 0.49-0.63) experienced the greatest loss of representation among men and women, respectively, in the doctorate to postdoctoral transition. Black women had a statistically significant decrease in their representation ratio in the doctorate to postdoctoral transition from 2010 to 2019 (p-trend = 0.02).

CONCLUSION

We quantified diverse race and ethnicity representation in contemporary US S&T training and found that Black men and women experienced the most consistent loss in representation across the S&T training pipeline. Findings should spur efforts to mitigate the structural racism and systemic barriers underpinning such disparities.

摘要

简介

在美国的科学、技术、工程和数学(STEM)职业中,不同种族和族裔的代表性仍然不足。由于整个 STEM 培训阶段都存在系统性障碍,因此可能会出现多样化代表性的连续流失,从而导致代表性较低,这通常被认为是一个“渗漏的管道”。我们旨在量化美国 STEM 培训中当前的渗漏管道。

方法

我们分析了美国 STEM 学位数据,按性别分层,然后按种族或族裔分层,这些数据来自国家科学基金会和国家科学与工程统计中心的调查数据。我们评估了 2019 年两个主要的 STEM 过渡点的种族和族裔代表性变化:从学士学位到博士学位(2003-2019 年)和从博士学位到博士后职位(2010-2019 年)。我们通过比较后期和前期的代表性来评估每个阶段的代表性变化,即用后期的代表性除以前期的代表性(代表性比率[RR])。我们通过单变量线性回归评估代表性比率的长期趋势。

结果

对于 2019 年,调查数据包括学士学位的 12714921 名男性和 10612879 名女性;博士学位的 14259 名男性和 12860 名女性;以及博士后数据的 11361 名男性和 8672 名女性。在 2019 年,我们观察到黑种人、亚裔和西班牙裔女性在从学士学位到博士学位的过渡中与女性的代表性损失相当(RR 0.86,95%置信区间[CI]0.81-0.92;RR 0.85,95%CI 0.81-0.89;RR 0.82,95%CI 0.77-0.87),而在男性中,黑种人和亚裔男性的代表性损失最大(黑种人男性 RR 0.72,95%CI 0.66-0.78;亚裔男性 RR 0.73,95%CI 0.70-0.77)]。我们观察到黑种人男性(RR 0.60,95%CI 0.51-0.69)和黑种人女性(RR 0.56,95%CI 0.49-0.63)分别是男性和女性中代表性损失最大的群体,在从博士学位到博士后的过渡中。黑种人女性的代表比率在从 2010 年到 2019 年的博士学位到博士后的过渡中出现了统计学上显著的下降(p 趋势=0.02)。

结论

我们量化了当代美国 STEM 培训中不同种族和族裔的代表性,发现黑种男性和女性在整个 STEM 培训管道中经历了最一致的代表性下降。这些发现应该促使人们努力减轻构成这些差异的结构性种族主义和系统性障碍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验