Suppr超能文献

MCH神经元活动的脑电图特征可预测可卡因觅求行为。

An EEG Signature of MCH Neuron Activities Predicts Cocaine Seeking.

作者信息

Wang Yao, Li Danyang, Widjaja Joseph, Guo Rong, Cai Li, Yan Rongzhen, Ozsoy Sahin, Allocca Giancarlo, Fang Jidong, Dong Yan, Tseng George C, Huang Chengcheng, Huang Yanhua H

机构信息

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213.

Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15219; 15260; 15213.

出版信息

bioRxiv. 2024 Mar 29:2024.03.27.586887. doi: 10.1101/2024.03.27.586887.

Abstract

BACKGROUND

Identifying biomarkers that predict substance use disorder (SUD) propensity may better strategize anti-addiction treatment. The melanin-concentrating hormone (MCH) neurons in the lateral hypothalamus (LH) critically mediates interactions between sleep and substance use; however, their activities are largely obscured in surface electroencephalogram (EEG) measures, hindering the development of biomarkers.

METHODS

Surface EEG signals and real-time Ca activities of LH MCH neurons (Ca) were simultaneously recorded in male and female adult rats. Mathematical modeling and machine learning were then applied to predict Ca using EEG derivatives. The robustness of the predictions was tested across sex and treatment conditions. Finally, features extracted from the EEG-predicted Ca either before or after cocaine experience were used to predict future drug-seeking behaviors.

RESULTS

An EEG waveform derivative - a modified theta-to-delta ratio (EEG Ratio) - accurately tracks real-time Ca in rats. The prediction was robust during rapid eye movement sleep (REMS), persisted through REMS manipulations, wakefulness, circadian phases, and was consistent across sex. Moreover, cocaine self-administration and long-term withdrawal altered EEG Ratio suggesting shortening and circadian redistribution of synchronous MCH neuron activities. In addition, features of EEG Ratio indicative of prolonged synchronous MCH neuron activities predicted lower subsequent cocaine seeking. EEG Ratio also exhibited advantages over conventional REMS measures for the predictions.

CONCLUSIONS

The identified EEG Ratio may serve as a non-invasive measure for assessing MCH neuron activities and evaluating REMS; it may also serve as a potential biomarker predicting drug use propensity.

摘要

背景

识别可预测物质使用障碍(SUD)倾向的生物标志物,可能有助于更好地制定抗成瘾治疗策略。下丘脑外侧区(LH)的促黑素细胞激素(MCH)神经元在睡眠与物质使用之间的相互作用中起关键介导作用;然而,它们的活动在表面脑电图(EEG)测量中大多难以体现,这阻碍了生物标志物的开发。

方法

在成年雄性和雌性大鼠中同时记录表面EEG信号和LH区MCH神经元的实时钙活动(Ca)。然后应用数学建模和机器学习,利用EEG导数预测Ca。在不同性别和治疗条件下测试预测的稳健性。最后,使用从可卡因体验前后的EEG预测Ca中提取的特征,来预测未来的觅药行为。

结果

一种EEG波形导数——修正的θ波与δ波比值(EEG比值)——能够准确追踪大鼠的实时Ca。该预测在快速眼动睡眠(REMS)期间稳健,在REMS操作、清醒、昼夜节律阶段中持续存在,且在不同性别间保持一致。此外,可卡因自我给药和长期戒断改变了EEG比值,提示同步的MCH神经元活动缩短并出现昼夜重新分布。此外,指示同步MCH神经元活动延长的EEG比值特征预测随后的可卡因觅药行为较低。EEG比值在预测方面也优于传统的REMS测量。

结论

所识别的EEG比值可作为评估MCH神经元活动和评价REMS的非侵入性指标;它还可能作为预测药物使用倾向的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e53/10996698/dc4a9814077a/nihpp-2024.03.27.586887v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验