Suppr超能文献

开发一种自给式微流控芯片和基于物联网的即时检测设备,用于自动识别呼吸道病毒。

Development of a self-contained microfluidic chip and an internet-of-things-based point-of-care device for automated identification of respiratory viruses.

机构信息

Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin, 17104, South Korea.

出版信息

Lab Chip. 2024 Apr 30;24(9):2485-2496. doi: 10.1039/d3lc00933e.

Abstract

The COVID-19 pandemic greatly impacted the diagnostic market, leading to the development of new technologies such as point-of-care testing (POCT), multiplex testing, and digital health platforms. In this study, we present a self-contained microfluidic chip integrated with an internet-of-things (IoT)-based point-of-care (POC) device for rapid and sensitive diagnosis of respiratory viruses. Our platform enables sample-to-answer diagnostics within 70 min by automating RNA extraction, reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and fluorescence detection. The microfluidic chip is designed to store all the necessary reagents for the entire diagnostic assay, including a lysis buffer, a washing buffer, an elution buffer, and a lyophilized RT-LAMP cocktail. It can perform nucleic acid extraction, aliquoting, and gene amplification in multiple reaction chambers without cross-contamination. The IoT-based POC device consists of a Raspberry Pi 4 for device control and data processing, a CMOS sensor for measuring fluorescence signals, a resistive heater panel for temperature control, and solenoid valves for controlling the movement of on-chip reagent solutions. The proposed device is portable and features a touchscreen for user control and result display. We evaluated the performance of the platform using 11 clinical respiratory virus samples, including 5 SARS-CoV-2 samples, 2 influenza A samples, and 4 influenza B samples. All tested clinical samples were accurately identified with high specificity and fidelity, demonstrating the ability to simultaneously detect multiple respiratory viruses. The combination of the integrated microfluidic chip with the POC device offers a simple, cost-effective, and scalable solution for rapid molecular diagnosis of respiratory viruses in resource-limited settings.

摘要

新冠疫情极大地影响了诊断市场,促使新技术如即时检测(POCT)、多重检测和数字健康平台的发展。在本研究中,我们提出了一种自包含的微流控芯片,与基于物联网(IoT)的即时检测(POC)设备集成,用于快速和敏感的呼吸道病毒诊断。我们的平台通过自动化 RNA 提取、逆转录环介导等温扩增(RT-LAMP)和荧光检测,在 70 分钟内实现了从样本到答案的诊断。微流控芯片设计用于存储整个诊断测定所需的所有试剂,包括裂解缓冲液、洗涤缓冲液、洗脱缓冲液和冻干 RT-LAMP 混合物。它可以在多个反应室中进行核酸提取、分配和基因扩增,而不会发生交叉污染。基于 IoT 的 POC 设备由 Raspberry Pi 4 用于设备控制和数据处理、CMOS 传感器用于测量荧光信号、电阻加热板用于温度控制以及电磁阀用于控制芯片上试剂溶液的移动。该设备具有便携性和触摸屏,用于用户控制和结果显示。我们使用 11 个临床呼吸道病毒样本评估了该平台的性能,包括 5 个 SARS-CoV-2 样本、2 个流感 A 样本和 4 个流感 B 样本。所有测试的临床样本都被准确识别,具有高特异性和保真度,证明了能够同时检测多种呼吸道病毒的能力。集成微流控芯片与 POC 设备的结合为资源有限环境中快速分子诊断呼吸道病毒提供了一种简单、经济有效的可扩展解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验