Department of Neurosurgery, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin, 300070, China.
Department of Pediatric Neurosurgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
Neuroradiology. 2024 Jul;66(7):1113-1122. doi: 10.1007/s00234-024-03340-z. Epub 2024 Apr 8.
To develop and validate a prediction model based on imaging data for the prognosis of mild chronic subdural hematoma undergoing atorvastatin treatment.
We developed the prediction model utilizing data from patients diagnosed with CSDH between February 2019 and November 2021. Demographic characteristics, medical history, and hematoma characteristics in non-contrast computed tomography (NCCT) were extracted upon admission to the hospital. To reduce data dimensionality, a backward stepwise regression model was implemented to build a prognostic prediction model. We calculated the area under the receiver operating characteristic curve (AUC) of the prognostic prediction model by a tenfold cross-validation procedure.
Maximum thickness, volume, mean density, morphology, and kurtosis of the hematoma were identified as the most significant predictors of good hematoma dissolution in mild CSDH patients undergoing atorvastatin treatment. The prediction model exhibited good discrimination, with an area under the curve (AUC) of 0.82 (95% confidence interval [CI], 0.74-0.90) and good calibration (p = 0.613). The validation analysis showed the AUC of the final prognostic prediction model is 0.80 (95% CI 0.71-0.86) and it has good prediction performance.
The imaging data-based prediction model has demonstrated great prediction accuracy for good hematoma dissolution in mild CSDH patients undergoing atorvastatin treatment. The study results emphasize the importance of imaging data evaluation in the management of CSDH patients.
开发并验证一个基于影像学数据的预测模型,用于预测接受阿托伐他汀治疗的轻度慢性硬膜下血肿的预后。
我们利用 2019 年 2 月至 2021 年 11 月期间诊断为 CSDH 的患者的数据开发了预测模型。入院时提取人口统计学特征、病史和非对比 CT(NCCT)中的血肿特征。为了降低数据维度,采用逐步回归模型构建预后预测模型。我们通过十折交叉验证程序计算预后预测模型的接收者操作特征曲线(ROC)下面积(AUC)。
最大厚度、体积、平均密度、形态和峰度被确定为接受阿托伐他汀治疗的轻度 CSDH 患者血肿良好溶解的最重要预测因素。预测模型具有良好的区分能力,曲线下面积(AUC)为 0.82(95%置信区间 [CI],0.74-0.90),校准良好(p=0.613)。验证分析显示最终预后预测模型的 AUC 为 0.80(95% CI 0.71-0.86),具有良好的预测性能。
基于影像学数据的预测模型在预测接受阿托伐他汀治疗的轻度 CSDH 患者血肿良好溶解方面具有较高的准确性。研究结果强调了影像学数据评估在 CSDH 患者管理中的重要性。