Aksu Gokhan Onder, Keskin Seda
Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey.
ACS Appl Mater Interfaces. 2024 Apr 17;16(15):19806-19818. doi: 10.1021/acsami.4c01641. Epub 2024 Apr 8.
In this work, we introduced COFInformatics, a computational approach merging molecular simulations and machine learning (ML) algorithms, to evaluate all synthesized and hypothetical covalent organic frameworks (COFs) for the CO/CH mixture separation under four different adsorption-based processes: pressure swing adsorption (PSA), vacuum swing adsorption (VSA), temperature swing adsorption (TSA), and pressure-temperature swing adsorption (PTSA). We first extracted structural, chemical, energy-based, and graph-based molecular fingerprint features of every single COF structure in the very large COF space, consisting of nearly 70,000 materials, and then performed grand canonical Monte Carlo simulations to calculate the CO/CH mixture adsorption properties of 7540 COFs. These features and simulation results were used to develop ML models that accurately and rapidly predict CO/CH mixture adsorption and separation properties of all 68,614 COFs. The most efficient separation process and the best adsorbent candidates among the entire COF spectrum were identified and analyzed in detail to reveal the most important molecular features that lead to high-performance adsorbents. Our results showed that (i) many hypoCOFs outperform synthesized COFs by achieving higher CO/CH selectivities; (ii) the top COF adsorbents consist of narrow pores and linkers comprising aromatic, triazine, and halogen groups; and (iii) PTSA is the most efficient process to use COF adsorbents for natural gas purification. We believe that COFInformatics promises to expedite the evaluation of COF adsorbents for CO/CH separation, thereby circumventing the extensive, time- and resource-intensive molecular simulations.
在这项工作中,我们引入了COF信息学,这是一种将分子模拟和机器学习(ML)算法相结合的计算方法,用于评估所有合成的和假设的共价有机框架(COF)在四种不同的基于吸附的过程下对CO/CH混合物的分离性能:变压吸附(PSA)、真空变压吸附(VSA)、变温吸附(TSA)和变压变温吸附(PTSA)。我们首先在由近70,000种材料组成的非常大的COF空间中提取了每个单一COF结构的结构、化学、基于能量和基于图形的分子指纹特征,然后进行巨正则蒙特卡罗模拟,以计算7540种COF对CO/CH混合物的吸附性能。这些特征和模拟结果被用于开发ML模型,以准确、快速地预测所有68,614种COF对CO/CH混合物的吸附和分离性能。我们详细识别并分析了整个COF光谱中最有效的分离过程和最佳吸附剂候选物,以揭示导致高性能吸附剂的最重要分子特征。我们的结果表明:(i)许多假设的COF通过实现更高的CO/CH选择性优于合成的COF;(ii)顶级COF吸附剂由窄孔和包含芳香族、三嗪和卤素基团的连接体组成;(iii)PTSA是使用COF吸附剂进行天然气净化的最有效过程。我们相信,COF信息学有望加快对用于CO/CH分离的COF吸附剂的评估,从而避免进行广泛的、耗时且资源密集的分子模拟。