Institut des Sciences de la Terre, Centre d'Etudes et de Recherches de Djibouti (CERD), Route de l'aéroport, 486, Djibouti-ville, Djibouti.
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 157/a, 43124 Parma, Italy.
Sci Total Environ. 2024 Jun 1;927:171968. doi: 10.1016/j.scitotenv.2024.171968. Epub 2024 Apr 6.
In the northern East African Rift System, the Republic of Djibouti relies exclusively on groundwater, with levels of fluoride (up to 14 mg/L) and nitrate (up to 256 mg/L) posing potential health risks. To address this, 362 samples were considered, including 133 shallow groundwater samples, along with new and previously published data dating back to 2012 on deep (88) and thermal (141) groundwater samples. To understand the enrichment mechanisms, dissolved anion and cation constituents, geochemical and thermodynamic tools, and stable isotope ratios, such as δH(HO), δO(HO), δN(NO), and δO(NO), were used. In particular, two activity diagrams (Mg vs. Ca and Na vs. Ca), focused on aqueous and solid fluoride species in an updated thermodynamic dataset of 15 fluoride-bearing minerals, are shown for the first time. The dataset offers new and valuable insights into fluoride geochemistry (classic thermodynamic datasets combined with geochemical codes rely solely on fluorapatite and fluorite F-bearing minerals). Activity diagrams and geochemical modeling indicate that mineral dissolution primarily drives groundwater fluoride enrichment in all water types, whereas the elevated nitrate levels may stem from organic fertilizers like animal manure, as indicated by nitrate isotopes and NO/Cl vs Cl diagrams. Despite the arid climate and HO enrichment in shallow waters, evaporation seems to play a minor role. Monte Carlo simulations and sensitivity analysis were used to assess the health risks associated with elevated F and NO concentrations. Mapping-related spatial distribution analysis identified regional contamination hotspots using a global Moran's I and GIS tools. One fluoride and three nitrate contamination hotspots were identified at a p-value of 0.05. Groundwater chemistry revealed that 88 % of groundwater being consumed exceeded the permissible levels for fluoride and nitrate, posing potential health risks, particularly for teenagers and children. This study pinpoints specific areas with excessive nitrate and fluoride contamination, highlighting a high non-carcinogenic risk.
在东非大裂谷系统的北部,吉布提共和国完全依赖地下水,而水中的氟化物(高达 14 毫克/升)和硝酸盐(高达 256 毫克/升)含量则构成了潜在的健康风险。为了解决这个问题,研究人员共分析了 362 个样本,包括 133 个浅层地下水样本,以及 2012 年以来新的和之前发表的数据,这些数据涉及深层(88 个)和地热(141 个)地下水样本。为了了解富集成因,研究人员使用了溶解阴离子和阳离子成分、地球化学和热力学工具以及稳定同位素比值(如 δH(HO)、δO(HO)、δN(NO) 和 δO(NO))。特别是,首次展示了两个活动图(Mg 对 Ca 和 Na 对 Ca),这两个图专注于更新的热力学数据集(包含 15 种含氟矿物)中水中和固体氟化物的物种。该数据集为氟地球化学提供了新的、有价值的见解(经典热力学数据集结合地球化学代码仅依赖于氟磷灰石和萤石 F 型含氟矿物)。活动图和地球化学模拟表明,在所有水类型中,矿物溶解主要导致地下水氟化物的富集,而较高的硝酸盐水平可能来自于动物粪便等有机肥料,这一点可以从硝酸盐同位素和 NO/Cl 对 Cl 图中看出。尽管气候干燥且浅层水中的氢氧根离子富集,但蒸发似乎作用较小。蒙特卡罗模拟和敏感性分析用于评估与氟化物和硝酸盐浓度升高相关的健康风险。使用全局 Moran's I 和 GIS 工具进行的制图相关空间分布分析确定了区域污染热点。在 p 值为 0.05 时,确定了一个氟化物和三个硝酸盐污染热点。地下水化学表明,88%的地下水消耗超过了氟化物和硝酸盐的允许水平,这可能会对青少年和儿童造成健康风险。本研究指出了特定的硝酸盐和氟化物污染严重地区,突显了高度的非致癌风险。