Suppr超能文献

细菌精胺、热精胺、降精胺、亚精胺、腐胺和 N-氨丙基胍丁胺合成酶的功能鉴定。

Functional identification of bacterial spermine, thermospermine, norspermine, norspermidine, spermidine, and N-aminopropylagmatine synthases.

机构信息

Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.

Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama, Japan.

出版信息

J Biol Chem. 2024 May;300(5):107281. doi: 10.1016/j.jbc.2024.107281. Epub 2024 Apr 6.

Abstract

Spermine synthase is an aminopropyltransferase that adds an aminopropyl group to the essential polyamine spermidine to form tetraamine spermine, needed for normal human neural development, plant salt and drought resistance, and yeast CoA biosynthesis. We functionally identify for the first time bacterial spermine synthases, derived from phyla Bacillota, Rhodothermota, Thermodesulfobacteriota, Nitrospirota, Deinococcota, and Pseudomonadota. We also identify bacterial aminopropyltransferases that synthesize the spermine same mass isomer thermospermine, from phyla Cyanobacteriota, Thermodesulfobacteriota, Nitrospirota, Dictyoglomota, Armatimonadota, and Pseudomonadota, including the human opportunistic pathogen Pseudomonas aeruginosa. Most of these bacterial synthases were capable of synthesizing spermine or thermospermine from the diamine putrescine and so possess also spermidine synthase activity. We found that most thermospermine synthases could synthesize tetraamine norspermine from triamine norspermidine, that is, they are potential norspermine synthases. This finding could explain the enigmatic source of norspermine in bacteria. Some of the thermospermine synthases could synthesize norspermidine from diamine 1,3-diaminopropane, demonstrating that they are potential norspermidine synthases. Of 18 bacterial spermidine synthases identified, 17 were able to aminopropylate agmatine to form N-aminopropylagmatine, including the spermidine synthase of Bacillus subtilis, a species known to be devoid of putrescine. This suggests that the N-aminopropylagmatine pathway for spermidine biosynthesis, which bypasses putrescine, may be far more widespread than realized and may be the default pathway for spermidine biosynthesis in species encoding L-arginine decarboxylase for agmatine production. Some thermospermine synthases were able to aminopropylate N-aminopropylagmatine to form N-guanidinothermospermine. Our study reveals an unsuspected diversification of bacterial polyamine biosynthesis and suggests a more prominent role for agmatine.

摘要

精胺合酶是一种氨丙基转移酶,它将氨丙基基团添加到必需的多胺精脒上,形成四胺精脒,这是正常人类神经发育、植物耐盐和耐旱以及酵母 CoA 生物合成所必需的。我们首次从芽孢杆菌门、红杆菌门、热脱硫杆菌门、硝化螺旋菌门、肠球菌门和假单胞菌门中鉴定出细菌精胺合酶。我们还鉴定出细菌氨丙基转移酶,它们从蓝藻门、热脱硫杆菌门、硝化螺旋菌门、Dictyoglomota 门、Armatimonadota 门和假单胞菌门合成精胺同质量异构物热精胺,包括人类机会性病原体铜绿假单胞菌。这些细菌合成酶大多数能够从二胺腐胺合成精胺或热精胺,因此也具有精脒合酶活性。我们发现大多数热精胺合酶能够从三胺亚精脒合成四胺降亚精胺,也就是说它们是潜在的降亚精胺合酶。这一发现可以解释细菌中降亚精胺的神秘来源。一些热精胺合酶能够从二胺 1,3-二氨基丙烷合成降亚精脒,表明它们是潜在的降亚精脒合酶。在鉴定的 18 种细菌精脒合酶中,有 17 种能够将胍丁胺氨丙基化形成 N-氨丙基胍丁胺,包括枯草芽孢杆菌的精脒合酶,枯草芽孢杆菌是一种已知缺乏腐胺的物种。这表明,绕过腐胺的精脒生物合成的 N-氨丙基胍丁胺途径可能比人们意识到的更为广泛,并且可能是编码用于胍丁胺生产的 L-精氨酸脱羧酶的物种中精脒生物合成的默认途径。一些热精胺合酶能够将 N-氨丙基胍丁胺氨丙基化形成 N-胍基热精胺。我们的研究揭示了细菌多胺生物合成的意想不到的多样化,并暗示了胍丁胺的作用更为突出。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9a6/11107197/e0b2713297cd/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验