Suppr超能文献

利用本地下一代测序训练数据提高 HLA 分型推断准确性和识别 eplet。

Improving HLA typing imputation accuracy and eplet identification with local next-generation sequencing training data.

机构信息

Immunology and Histocompatibility Laboratory, Saint-Louis Hospital, Paris, France.

MICS-Research laboratory in Mathematics and Computer Science at CentraleSupélec, Gif-Sur-Yvette, France.

出版信息

HLA. 2024 Jan;103(1):e15222. doi: 10.1111/tan.15222. Epub 2023 Sep 15.

Abstract

Assessing donor/recipient HLA compatibility at the eplet level requires second field DNA typings but these are not always available. These can be estimated from lower-resolution data either manually or with computational tools currently relying, at best, on data containing typing ambiguities. We gathered NGS typing data from 61,393 individuals in 17 French laboratories, for loci A, B, and C (100% of typings), DRB1 and DQB1 (95.5%), DQA1 (39.6%), DRB3/4/5, DPB1, and DPA1 (10.5%). We developed HaploSFHI, a modified iterative maximum likelihood algorithm, to impute second field HLA typings from low- or intermediate-resolution ones. Compared with the reference tools HaploStats, HLA-EMMA, and HLA-Upgrade, HaploSFHI provided more accurate predictions across all loci on two French test sets and four European-independent test sets. Only HaploSFHI could impute DQA1, and solely HaploSFHI and HaploStats provided DRB3/4/5 imputations. The improved performance of HaploSFHI was due to our local and nonambiguous data. We provided explanations for the most common imputation errors and pinpointed the variability of a low number of low-resolution haplotypes. We thus provided guidance to select individuals for whom sequencing would optimize incompatibility assessment and cost-effectiveness of HLA typing, considering not only well-imputed second field typing(s) but also well-imputed eplets.

摘要

评估供体/受者 HLA 等位基因在 eplet 水平上的相容性需要进行第二字段 DNA 分型,但并非总是可用。这些可以通过手动或使用计算工具从较低分辨率的数据中进行估计,目前这些工具最多依赖于包含分型歧义的数据。我们从 17 个法国实验室的 61393 个人中收集了 NGS 分型数据,用于 A、B 和 C 基因座(100%的分型)、DRB1 和 DQB1(95.5%)、DQA1(39.6%)、DRB3/4/5、DPB1 和 DPA1(10.5%)。我们开发了 HaploSFHI,这是一种改进的迭代最大似然算法,用于从低分辨率或中等分辨率数据中推断第二字段 HLA 分型。与参考工具 HaploStats、HLA-EMMA 和 HLA-Upgrade 相比,HaploSFHI 在两个法国测试集和四个欧洲独立测试集的所有基因座上都提供了更准确的预测。只有 HaploSFHI 可以推断 DQA1,只有 HaploSFHI 和 HaploStats 可以提供 DRB3/4/5 的推断。HaploSFHI 性能的提高是由于我们使用了本地且无歧义的数据。我们解释了最常见的推断错误,并指出了少数低分辨率单倍型的可变性。因此,我们提供了指导,以选择那些进行测序可以优化不相容性评估和 HLA 分型成本效益的个体,不仅要考虑到良好推断的第二字段分型,还要考虑到良好推断的 eplet。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验