Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China.
Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Kowloon, Hong Kong, China.
J Nanobiotechnology. 2024 Apr 8;22(1):158. doi: 10.1186/s12951-024-02418-3.
In the context of wound healing and tissue regeneration, precise control of cell migration direction is deemed crucial. To address this challenge, polydimethylsiloxane (PDMS) platforms with patterned 10 nm thick TiO in arrowhead shape were designed and fabricated. Remarkably, without tall sidewall constraints, MC3T3-E1 cells seeded on these platforms were constrained to migrate along the tips of the arrowheads, as the cells were guided by the asymmetrical arrowhead tips which provided large contact areas. To the best of our knowledge, this is the first study demonstrating the use of thin TiO arrowhead pattern in combination with a cell-repellent PDMS surface to provide guided cell migration unidirectionally without tall sidewall constraints. Additionally, high-resolution fluorescence imaging revealed that the asymmetrical distribution of focal adhesions, triggered by the patterned TiO arrowheads with arm lengths of 10, 20, and 35 μm, promoted cell adhesion and protrusion along the arrowhead tip direction, resulting in unidirectional cell migration. These findings have important implications for the design of biointerfaces with ultrathin patterns to precisely control cell migration. Furthermore, microelectrodes were integrated with the patterned TiO arrowheads to enable dynamic monitoring of cell migration using impedance measurement. This microfluidic device integrated with thin layer of guiding pattern and microelectrodes allows simultaneous control of directional cell migration and characterization of the cell movement of individual MC3T3-E1 cells, offering great potential for the development of biosensors for single-cell monitoring.
在创伤愈合和组织再生的背景下,精确控制细胞迁移方向被认为至关重要。为了解决这一挑战,设计并制造了具有箭头形状的 10nm 厚 TiO2 图案化的聚二甲基硅氧烷(PDMS)平台。值得注意的是,在没有高侧壁限制的情况下,接种在这些平台上的 MC3T3-E1 细胞被限制沿着箭头的尖端迁移,因为细胞被不对称的箭头尖端引导,这些尖端提供了较大的接触面积。据我们所知,这是第一项研究表明,使用薄的 TiO2 箭头图案与细胞排斥 PDMS 表面结合,在没有高侧壁限制的情况下,单向引导细胞迁移。此外,高分辨率荧光成像显示,由臂长为 10、20 和 35μm 的图案化 TiO2 箭头触发的非对称焦点粘附分布,促进了细胞沿着箭头尖端方向的粘附和突起,从而导致单向细胞迁移。这些发现对于设计具有超薄膜图案的生物界面以精确控制细胞迁移具有重要意义。此外,微电极与图案化的 TiO2 箭头集成在一起,通过阻抗测量实现细胞迁移的动态监测。这种集成了薄层导向图案和微电极的微流控装置允许对定向细胞迁移进行同时控制和单个 MC3T3-E1 细胞的运动特征进行描述,为单细胞监测的生物传感器的发展提供了巨大潜力。