College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
Analyst. 2020 Aug 21;145(16):5603-5614. doi: 10.1039/d0an01085e. Epub 2020 Jul 7.
Dielectrophoresis (DEP) is a powerful technique for label-free cell separation in microfluidics. Easily-fabricated DEP separators with low cost and short turnaround time are in extremely high demand in practical applications, especially clinical usage where disposable devices are needed. DEP separators exploiting microelectrodes made of conducting polydimethylsiloxane (PDMS) composites enable the construction of advantageous 3D volumetric electrodes with a simple soft-lithography process. Yet, existing devices incorporating microelectrodes in conducting PDMS generally have their fluidic sidewalls constructed using a different material, and consequently require extra lithography of a sacrificial layer on the semi-finished master for molding the electrode and fluidic sidewalls in separate steps. Here we demonstrate a novel microfluidic DEP separator with a 3D electrode and fluidic structure entirely integrated within silver-PDMS composites. We develop a further simplified one-step molding process with lower cost using a readily-available and reusable SU8 master, eliminating the need for the additional lithography step in existing techniques. The uniquely designed two-layer electrode exhibits a spatially non-uniform electric field that enables cell migration in the vertical direction. The electrode upper layer then offers a harbor-like region for the trapping of the target cells that have drifted upwards, which shelters them from being dragged away by the main flow streams in the lower layer, and thus allows higher operation flow rate. We also optimize the upper layer thickness as a critical dimension for protecting the trapped cells from high drag and show easy widening of our device by elongation of the digits. We demonstrate that the elongated digits involving more parallel flow paths maintain a high capture efficiency of 95.4% for live cells with 85.6% purity in the separation of live/dead HeLa cells. We also investigate the device feasibility in a viability assay for cells post anti-cancer drug treatment.
介电泳(DEP)是微流控中用于无标记细胞分离的强大技术。在实际应用中,尤其是在需要一次性使用设备的临床应用中,人们迫切需要制造简单、成本低、周转时间短的介电泳分离器。利用由导电聚二甲基硅氧烷(PDMS)复合材料制成的微电极,可以通过简单的软光刻工艺来构建有利的 3D 体积电极。然而,现有的将微电极集成到导电 PDMS 中的设备通常其流体侧壁是使用不同的材料构建的,因此需要对半成品模具进行额外的牺牲层光刻,以分别对电极和流体侧壁进行模制。在这里,我们展示了一种新型的微流控介电泳分离器,它具有完全集成在银 PDMS 复合材料中的 3D 电极和流体结构。我们使用一种易于获得且可重复使用的 SU8 模具,进一步简化了成本更低的一步成型工艺,省去了现有技术中额外的光刻步骤。独特设计的双层电极具有空间不均匀的电场,能够实现细胞在垂直方向上的迁移。电极上层提供了一个类似港湾的区域,用于捕获向上漂移的目标细胞,防止它们被下层的主流冲走,从而允许更高的操作流速。我们还优化了上层厚度作为保护被困细胞免受高阻力的关键尺寸,并展示了通过延长指状物来轻松扩展我们的设备。我们证明了延长的指状物涉及更多的平行流道,在分离活/死 HeLa 细胞时,能够保持 95.4%的活细胞高捕获效率,纯度为 85.6%。我们还研究了该设备在抗癌药物治疗后细胞活力测定中的可行性。