Suppr超能文献

复合材料、生物材料及仿生材料的扩展有限元法综述

XFEM for Composites, Biological, and Bioinspired Materials: A Review.

作者信息

Vellwock Andre E, Libonati Flavia

机构信息

B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.

Department of Mechanical, Energy, Management and Transportation Engineering, University of Genoa, 16145 Genoa, Italy.

出版信息

Materials (Basel). 2024 Feb 4;17(3):745. doi: 10.3390/ma17030745.

Abstract

The eXtended finite element method (XFEM) is a powerful tool for structural mechanics, assisting engineers and designers in understanding how a material architecture responds to stresses and consequently assisting the creation of mechanically improved structures. The XFEM method has unraveled the extraordinary relationships between material topology and fracture behavior in biological and engineered materials, enhancing peculiar fracture toughening mechanisms, such as crack deflection and arrest. Despite its extensive use, a detailed revision of case studies involving XFEM with a focus on the applications rather than the method of numerical modeling is in great need. In this review, XFEM is introduced and briefly compared to other computational fracture models such as the contour integral method, virtual crack closing technique, cohesive zone model, and phase-field model, highlighting the pros and cons of the methods (e.g., numerical convergence, commercial software implementation, pre-set of crack parameters, and calculation speed). The use of XFEM in material design is demonstrated and discussed, focusing on presenting the current research on composites and biological and bioinspired materials, but also briefly introducing its application to other fields. This review concludes with a discussion of the XFEM drawbacks and provides an overview of the future perspectives of this method in applied material science research, such as the merging of XFEM and artificial intelligence techniques.

摘要

扩展有限元法(XFEM)是结构力学中的一种强大工具,可帮助工程师和设计师了解材料结构如何对应力作出响应,从而辅助创建机械性能更优的结构。XFEM方法揭示了生物材料和工程材料中材料拓扑结构与断裂行为之间的特殊关系,强化了诸如裂纹偏转和止裂等独特的断裂增韧机制。尽管其应用广泛,但迫切需要对涉及XFEM的案例研究进行详细修订,重点是应用而非数值建模方法。在本综述中,介绍了XFEM,并将其与其他计算断裂模型(如轮廓积分法、虚拟裂纹闭合技术、内聚区模型和相场模型)进行了简要比较,突出了这些方法的优缺点(如数值收敛性、商业软件实现、裂纹参数预设和计算速度)。展示并讨论了XFEM在材料设计中的应用,重点介绍了当前在复合材料以及生物和仿生材料方面的研究,同时也简要介绍了其在其他领域的应用。本综述最后讨论了XFEM的缺点,并概述了该方法在应用材料科学研究中的未来前景,如XFEM与人工智能技术的融合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d2f/10856485/8070b4a9f935/materials-17-00745-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验