Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China.
Wesee Medical Imaging Co., Ltd, Wuhan, 430074, People's Republic of China.
Phys Med Biol. 2024 May 8;69(10). doi: 10.1088/1361-6560/ad3c8f.
Many studies have been carried out on ultrasound computed tomography (USCT) for its ability to offer quantitative measurements of tissue sound speed. Full waveform inversion (FWI) is a technique for reconstructing high-resolution sound speed images by iteratively minimizing the difference between the observed ultrasound data and the synthetic data based on the waveform equation. However, FWI suffers from cycle-skipping, which usually causes FWI convergence at a local minimum. Cycle-skipping occurs when the phase difference between the observed data and the synthetic data exceeds half a cycle. The simplest way to avoid cycle-skipping is to use low-frequency information for reconstruction. Nevertheless, in imaging systems, the response bandwidth of the probe is limited, and reliable low-frequency information often exceeds the response band. Therefore, it is a challenge to perform FWI imaging and avoid cycle-skipping problems without low-frequency information. In this paper, we propose a frequency shift envelope-based global correlation norm (FSEGCN), where an artificial source wavelet with a lower frequency is adopted to calculate synthetic data. FSEGCN compared with FWI, envelope inversion (EI), global correlation norm (GCN), envelope-based global correlation norm (EGCN) through concentric circle phantom without low-frequency information. The experimental results demonstrated the capability of the proposed method to recover the sound speed close to the exact model in the absence of low-frequency information, whereas FWI, EI, GCN, and EGCN cannot. Experiments on phantoms of the human head and calf show that artificial source wavelets can reduce image artifacts and enhance reconstruction robustness, when original low-frequency information is absent.
许多研究已经针对超声计算机断层成像(USCT)进行了研究,因为它能够提供组织声速的定量测量。全波场反演(FWI)是一种通过迭代最小化观测到的超声数据与基于波形方程的合成数据之间的差异来重建高分辨率声速图像的技术。然而,FWI 存在循环跳跃问题,这通常会导致 FWI 在局部最小值处收敛。当观测数据与合成数据之间的相位差超过半周期时,就会发生循环跳跃。避免循环跳跃的最简单方法是使用低频信息进行重建。然而,在成像系统中,探头的响应带宽是有限的,可靠的低频信息往往超过响应带宽。因此,在没有低频信息的情况下进行 FWI 成像并避免循环跳跃问题是一个挑战。在本文中,我们提出了一种基于频移包络全局相关范数(FSEGCN)的方法,其中采用了一个较低频率的人工震源子波来计算合成数据。通过对无低频信息的同心圆体模进行 FSEGCN 与 FWI、包络反演(EI)、全局相关范数(GCN)、基于包络的全局相关范数(EGCN)的比较。实验结果表明,该方法在没有低频信息的情况下能够恢复接近精确模型的声速,而 FWI、EI、GCN 和 EGCN 则不能。对人头和小腿的体模实验表明,当原始低频信息不存在时,人工震源子波可以减少图像伪影并增强重建稳健性。