Zhang Nuomin, Xiao Yang, Yuan Yu, Yang Xudong, Shen Yi
Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, China.
Computational Sensing Research Center, Zhejiang lab, Hangzhou, China.
Ultrasound Med Biol. 2025 Aug;51(8):1195-1209. doi: 10.1016/j.ultrasmedbio.2025.04.003. Epub 2025 May 4.
In ultrasound computed tomography (USCT), full-waveform inversion (FWI) is a promising algorithm for high-resolution sound-speed reconstruction. When implementing FWI in practical imaging systems, insufficient high-quality, low-frequency information often leads to cycle skipping, which subsequently degrades convergence and accuracy. To address this problem, this paper proposes a modified FWI algorithm.
Our approach incorporated low-frequency extrapolation for seismic imaging applications, capitalizing on the inherent sparsity of time-domain impulse response functions. Through a deconvolution-based framework, we enabled robust impulse response function estimation that facilitated the spectral extension of band-limited measurements. The extrapolated low-frequency components, while representing an approximate recovery rather than exact reconstruction of unmeasured frequencies, demonstrated sufficient fidelity for practical implementation in multi-frequency inversion workflows.
Numerical and experimental studies have demonstrated the efficacy of extrapolated low-frequency components in mitigating cycle-skipping artifacts. Compared with conventional low-pass filtering, the proposed method reduced the sound-speed reconstruction root mean square error from 34.47 m/s to 6.47 m/s. Phantom experiments confirmed the robustness of our method, demonstrating root mean square error reduction from 16.57 m/s (standard filtering) to 5.98 m/s (our method).
This work relaxes the restriction of FWI in transducer frequency, potentially making FWI more compatible with high-frequency imaging modalities.
在超声计算机断层扫描(USCT)中,全波形反演(FWI)是一种用于高分辨率声速重建的很有前景的算法。在实际成像系统中实施FWI时,高质量低频信息不足常常导致周跳,进而降低收敛性和准确性。为解决这一问题,本文提出一种改进的FWI算法。
我们的方法将地震成像应用中的低频外推法纳入其中,利用时域脉冲响应函数固有的稀疏性。通过基于反卷积的框架,我们实现了稳健的脉冲响应函数估计,这有助于带限测量的频谱扩展。外推的低频分量虽然代表了未测量频率的近似恢复而非精确重建,但在多频反演工作流程的实际应用中显示出足够的保真度。
数值和实验研究证明了外推低频分量在减轻周跳伪影方面的有效性。与传统低通滤波相比,该方法将声速重建均方根误差从34.47米/秒降至6.47米/秒。模型实验证实了我们方法的稳健性,均方根误差从16.57米/秒(标准滤波)降至5.98米/秒(我们的方法)。
这项工作放宽了FWI在换能器频率方面的限制,可能使FWI与高频成像模式更兼容。