Karami Yasaman, Bignon Emmanuelle
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France.
Université de Lorraine, CNRS, LPCT UMR7019, F-54000 Nancy, France.
Comput Struct Biotechnol J. 2024 Apr 3;23:1387-1396. doi: 10.1016/j.csbj.2024.03.025. eCollection 2024 Dec.
Gene activity is tightly controlled by reversible chemical modifications called epigenetic marks, which are of various types and modulate gene accessibility without affecting the DNA sequence. Despite an increasing body of evidence demonstrating the role of oxidative-type modifications of histones in gene expression regulation, there remains a complete absence of structural data at the atomistic level to understand the molecular mechanisms behind their regulatory action. Owing to μs time-scale MD simulations and protein communication networks analysis, we describe the impact of histone H3 hyperoxidation (i.e., S-sulfonylation) on the nucleosome core particle dynamics. Our results reveal the atomic-scale details of the intrinsic structural networks within the canonical histone core and their perturbation by hyperoxidation of the histone H3 C110. We show that this modification involves local rearrangements of the communication networks and destabilizes the dyad, and that one modification is enough to induce a maximal structural signature. Our results suggest that cysteine hyperoxidation in the nucleosome core particle might favor its disassembly.
基因活性受到称为表观遗传标记的可逆化学修饰的严格控制,这些修饰类型多样,可调节基因的可及性而不影响DNA序列。尽管越来越多的证据表明组蛋白的氧化型修饰在基因表达调控中发挥作用,但在原子水平上仍完全缺乏结构数据来理解其调控作用背后的分子机制。基于微秒时间尺度的分子动力学(MD)模拟和蛋白质通信网络分析,我们描述了组蛋白H3高度氧化(即S-磺酰化)对核小体核心颗粒动力学的影响。我们的结果揭示了经典组蛋白核心内固有结构网络的原子尺度细节以及组蛋白H3 C110高度氧化对其的扰动。我们表明,这种修饰涉及通信网络的局部重排并使二分体不稳定,并且一次修饰就足以诱导最大的结构特征。我们的结果表明,核小体核心颗粒中的半胱氨酸高度氧化可能有利于其解聚。