Bhatt Megh R, Zondlo Neal J
Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
Org Biomol Chem. 2023 Mar 29;21(13):2779-2800. doi: 10.1039/d3ob00179b.
Cysteine sulfonic acid (Cys-SOH; cysteic acid) is an oxidative post-translational modification of cysteine, resulting from further oxidation from cysteine sulfinic acid (Cys-SOH). Cysteine sulfonic acid is considered an irreversible post-translational modification, which serves as a biomarker of oxidative stress that has resulted in oxidative damage to proteins. Cysteine sulfonic acid is anionic, as a sulfonate (Cys-SO; cysteate), in the ionization state that is almost exclusively present at physiological pH (p ∼ -2). In order to understand protein structural changes that can occur upon oxidation to cysteine sulfonic acid, we analyzed its conformational preferences, using experimental methods, bioinformatics, and DFT-based computational analysis. Cysteine sulfonic acid was incorporated into model peptides for α-helix and polyproline II helix (PPII). Within peptides, oxidation of cysteine to the sulfonic acid proceeds rapidly and efficiently at room temperature in solution with methyltrioxorhenium (MeReO) and HO. Peptides containing cysteine sulfonic acid were also generated on solid phase using trityl-protected cysteine and oxidation with MeReO and HO. Using methoxybenzyl (Mob)-protected cysteine, solid-phase oxidation with MeReO and HO generated the Mob sulfone precursor to Cys-SO within fully synthesized peptides. These two solid-phase methods allow the synthesis of peptides containing either Cys-SO or Cys-SO in a practical manner, with no solution-phase synthesis required. Cys-SO had low PPII propensity for PPII propagation, despite promoting a relatively compact conformation in . In contrast, in a PPII initiation model system, Cys-SO promoted PPII relative to neutral Cys, with PPII initiation similar to Cys thiolate but less than Cys-SO or Ala. In an α-helix model system, Cys-SO promoted α-helix near the N-terminus, due to favorable helix dipole interactions and favorable α-helix capping a sulfonate-amide side chain-main chain hydrogen bond. Across all peptides, the sulfonate side chain was significantly less ordered than that of the sulfinate. Analysis of Cys-SO in the PDB revealed a very strong propensity for local (/ or / + 1) side chain-main chain sulfonate-amide hydrogen bonds for Cys-SO, with >80% of Cys-SO residues exhibiting these interactions. DFT calculations conducted to explore these conformational preferences indicated that side chain-main chain hydrogen bonds of the sulfonate with the intraresidue amide and/or with the + 1 amide were favorable. However, hydrogen bonds to water or to amides, as well as interactions with oxophilic metals, were weaker for the sulfonate than the sulfinate, due to lower charge density on the oxygens in the sulfonate.
半胱氨酸磺酸(Cys-SOH;磺基丙氨酸)是半胱氨酸的一种氧化后修饰,由半胱亚磺酸(Cys-SO₂H)进一步氧化产生。半胱氨酸磺酸被认为是一种不可逆的翻译后修饰,可作为氧化应激的生物标志物,这种氧化应激已导致蛋白质发生氧化损伤。在生理pH值(pKa ∼ -2)几乎唯一存在的离子化状态下,半胱氨酸磺酸以磺酸盐(Cys-SO₃⁻;半胱氨酸盐)形式呈阴离子状态。为了了解氧化为半胱氨酸磺酸后可能发生的蛋白质结构变化,我们使用实验方法、生物信息学和基于密度泛函理论(DFT)的计算分析,分析了其构象偏好。半胱氨酸磺酸被引入α-螺旋和多聚脯氨酸II螺旋(PPII)的模型肽中。在肽内,在溶液中于室温下用甲基三氧化铼(MeReO₃)和H₂O₂可使半胱氨酸快速有效地氧化为磺酸。使用三苯甲基保护的半胱氨酸,在固相上也可通过用MeReO₃和H₂O₂氧化生成含半胱氨酸磺酸的肽。使用甲氧基苄基(Mob)保护的半胱氨酸,在全合成肽中用MeReO₃和H₂O₂进行固相氧化可生成Cys-SO₃⁻的Mob砜前体。这两种固相方法能够以实用的方式合成含有Cys-SO₂⁻或Cys-SO₃⁻的肽,无需溶液相合成。尽管Cys-SO₃⁻在促进PPII形成相对紧密的构象方面有作用,但它对PPII延伸的倾向较低。相比之下,在PPII起始模型系统中,相对于中性半胱氨酸,Cys-SO₃⁻促进PPII形成,其PPII起始与半胱氨酸硫醇盐相似,但小于Cys-SO₂⁻或丙氨酸。在α-螺旋模型系统中,由于有利的螺旋偶极相互作用和有利的α-螺旋封端(一个磺酸盐 - 酰胺侧链 - 主链氢键),Cys-SO₃⁻在N端附近促进α-螺旋形成。在所有肽中,磺酸根侧链的有序程度明显低于亚磺酸根侧链。对蛋白质数据银行(PDB)中Cys-SO₃⁻的分析表明,Cys-SO₃⁻具有很强的局部(i或i + 1)侧链 - 主链磺酸根 - 酰胺氢键倾向,超过80%的Cys-SO₃⁻残基表现出这些相互作用。为探索这些构象偏好而进行的DFT计算表明,磺酸根与残基内酰胺和/或与i + 1酰胺的侧链 - 主链氢键是有利的。然而,由于磺酸根中氧原子上的电荷密度较低,磺酸根与水或酰胺的氢键以及与亲氧金属的相互作用比亚磺酸根弱。