Suppr超能文献

深度思维21功能不适用于过渡金属化学。

Deep Mind 21 functional does not extrapolate to transition metal chemistry.

作者信息

Zhao Heng, Gould Tim, Vuckovic Stefan

机构信息

Department of Chemistry, University of Fribourg, Fribourg, Switzerland.

Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia.

出版信息

Phys Chem Chem Phys. 2024 Apr 24;26(16):12289-12298. doi: 10.1039/d4cp00878b.

Abstract

The development of density functional approximations stands at a crossroads: while machine-learned functionals show potential to surpass their human-designed counterparts, their extrapolation to unseen chemistry lags behind. Here we assess how well the recent Deep Mind 21 (DM21) machine-learned functional [, 2021, , 1385-1389], trained on main-group chemistry, extrapolates to transition metal chemistry (TMC). We show that DM21 demonstrates comparable or occasionally superior accuracy to B3LYP for TMC, but consistently struggles with achieving self-consistent field convergence for TMC molecules. We also compare main-group and TMC machine-learning DM21 features to shed light on DM21's challenges in TMC. We finally propose strategies to overcome limitations in the extrapolative capabilities of machine-learned functionals in TMC.

摘要

密度泛函近似的发展正处于一个十字路口

虽然机器学习泛函显示出超越人工设计泛函的潜力,但它们对未知化学领域的外推能力却滞后了。在这里,我们评估了最近基于主族化学训练的深度思维21(DM21)机器学习泛函[,2021,,1385 - 1389]对过渡金属化学(TMC)的外推效果。我们表明,对于TMC,DM21表现出与B3LYP相当或偶尔更优的准确性,但在实现TMC分子的自洽场收敛方面一直存在困难。我们还比较了主族和TMC的机器学习DM21特征,以阐明DM21在TMC中的挑战。最后,我们提出了克服机器学习泛函在TMC外推能力方面局限性的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验