Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, Thailand.
Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand.
PLoS One. 2024 Apr 10;19(4):e0298010. doi: 10.1371/journal.pone.0298010. eCollection 2024.
Uncontrolled type 2 diabetes (T2DM) and limited hemoglobin A1c (HbA1c) levels examination are a burden in community hospitals in Thailand. The nomogram from the patients' information might be a practical solution to identify a high-risk group of diabetic complications. Thus, this study aimed to establish an effective prognostic nomogram for patients with uncontrolled T2DM.
Sequential nationwide cross-sectional studies of T2DM patients in 2018 and 2015 were utilized for development and validation groups, respectively, with this chronological order aiming to capture recent trends during development and assess the nomogram's robustness across diverse timeframes. The predictive outcome was uncontrolled T2DM, defined as HbA1c ≥9%. The model was determined by multivariable regression analysis and established an effective prognostic nomogram. The receiver operating characteristic curve, Hosmer-Lemeshow goodness of fit test, and decision curve analysis (DCA) was applied to evaluate the performance of the nomogram.
In 2018, 24% of the 38,568 participants in the development group had uncontrolled T2DM (defined as Hba1c ≥9%). The predictive nomogram of uncontrolled diabetes consisted of demographic characteristics, prescription medications, history of diabetic complications, and laboratory results (C-statistic of 0.77). The goodness of fit test and DCA showed good agreement between the result and clinical application for T2DM.
The predictive nomogram demonstrates simplicity, accuracy, and valuable prediction to enhance diabetic care in resource-limited countries, including Thailand.
在泰国的社区医院,2 型糖尿病(T2DM)控制不佳和有限的糖化血红蛋白(HbA1c)检查是一个负担。从患者信息中构建的列线图可能是识别糖尿病并发症高危人群的实用解决方案。因此,本研究旨在为控制不佳的 T2DM 患者建立有效的预测列线图。
分别利用 2018 年和 2015 年的全国性、连续的 T2DM 患者横断面研究数据作为开发组和验证组,这种时间顺序旨在捕捉开发过程中的近期趋势,并评估列线图在不同时间框架内的稳健性。预测结果为 HbA1c≥9%的未控制 T2DM。通过多变量回归分析确定模型,并建立有效的预测列线图。使用受试者工作特征曲线、Hosmer-Lemeshow 拟合优度检验和决策曲线分析(DCA)评估列线图的性能。
在开发组的 38568 名参与者中,2018 年有 24%的人患有未控制的 T2DM(定义为 HbA1c≥9%)。未控制糖尿病的预测列线图包括人口统计学特征、处方药物、糖尿病并发症史和实验室结果(C 统计量为 0.77)。拟合优度检验和 DCA 显示,该结果与 T2DM 的临床应用具有良好的一致性。
该预测列线图具有简单、准确和有价值的预测能力,可增强资源有限国家(包括泰国)的糖尿病管理。