Suppr超能文献

规模化污水处理厂一氧化二氮排放的直接和间接监测方法:批判性回顾。

Direct and indirect monitoring methods for nitrous oxide emissions in full-scale wastewater treatment plants: A critical review.

机构信息

College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.

College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, PR China.

出版信息

J Environ Manage. 2024 May;358:120842. doi: 10.1016/j.jenvman.2024.120842. Epub 2024 Apr 9.

Abstract

Mitigation of nitrous oxide (NO) emissions in full-scale wastewater treatment plant (WWTP) has become an irreversible trend to adapt the climate change. Monitoring of NO emissions plays a fundamental role in understanding and mitigating NO emissions. This paper provides a comprehensive review of direct and indirect NO monitoring methods. The techniques, strengths, limitations, and applicable scenarios of various methods are discussed. We conclude that the floating chamber technique is suitable for capturing and interpreting the spatiotemporal variability of real-time NO emissions, due to its long-term in-situ monitoring capability and high data acquisition frequency. The monitoring duration, location, and frequency should be emphasized to guarantee the accuracy and comparability of acquired data. Calculation by default emission factors (EFs) is efficient when there is a need for ambiguous historical NO emission accounts of national-scale or regional-scale WWTPs. Using process-specific EFs is beneficial in promoting mitigation pathways that are primarily focused on low-emission process upgrades. Machine learning models exhibit exemplary performance in the prediction of NO emissions. Integrating mechanistic models with machine learning models can improve their explanatory power and sharpen their predictive precision. The implementation of the synergy of nutrient removal and NO mitigation strategies necessitates the calibration and validation of multi-path mechanistic models, supported by long-term continuous direct monitoring campaigns.

摘要

减少大型污水处理厂(WWTP)中的氧化亚氮(NO)排放已经成为适应气候变化的不可逆转趋势。NO 排放监测对于了解和减少 NO 排放起着基础性作用。本文全面综述了直接和间接 NO 监测方法。讨论了各种方法的技术、优势、局限性和适用场景。我们得出结论,由于其长期的原位监测能力和高数据采集频率,浮动腔技术适合捕捉和解释实时 NO 排放的时空变异性。为了保证获得数据的准确性和可比性,应强调监测持续时间、地点和频率。当需要对国家或地区规模 WWTP 的模糊历史 NO 排放情况进行估算时,默认排放因子(EF)的计算是有效的。使用特定于工艺的 EF 有利于促进主要侧重于低排放工艺升级的减排途径。机器学习模型在预测 NO 排放方面表现出色。将机械模型与机器学习模型相结合可以提高它们的解释能力并提高预测精度。需要通过长期连续的直接监测活动来支持,对多路径机械模型进行校准和验证,以实施养分去除和 NO 减排策略的协同作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验