Suppr超能文献

LUNet:用于高分辨率眼底图像中动静脉分割的深度学习方法。

LUNet: deep learning for the segmentation of arterioles and venules in high resolution fundus images.

机构信息

Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.

Department of Applied Mathematics, Technion-IIT, Haifa, Israel.

出版信息

Physiol Meas. 2024 May 3;45(5). doi: 10.1088/1361-6579/ad3d28.

Abstract

This study aims to automate the segmentation of retinal arterioles and venules (A/V) from digital fundus images (DFI), as changes in the spatial distribution of retinal microvasculature are indicative of cardiovascular diseases, positioning the eyes as windows to cardiovascular health.We utilized active learning to create a new DFI dataset with 240 crowd-sourced manual A/V segmentations performed by 15 medical students and reviewed by an ophthalmologist. We then developed LUNet, a novel deep learning architecture optimized for high-resolution A/V segmentation. The LUNet model features a double dilated convolutional block to widen the receptive field and reduce parameter count, alongside a high-resolution tail to refine segmentation details. A custom loss function was designed to prioritize the continuity of blood vessel segmentation.LUNet significantly outperformed three benchmark A/V segmentation algorithms both on a local test set and on four external test sets that simulated variations in ethnicity, comorbidities and annotators.The release of the new datasets and the LUNet model (www.aimlab-technion.com/lirot-ai) provides a valuable resource for the advancement of retinal microvasculature analysis. The improvements in A/V segmentation accuracy highlight LUNet's potential as a robust tool for diagnosing and understanding cardiovascular diseases through retinal imaging.

摘要

本研究旨在实现从眼底数字图像(DFI)中自动分割视网膜动静脉(A/V),因为视网膜微血管的空间分布变化可提示心血管疾病,将眼睛定位为心血管健康的窗口。我们利用主动学习创建了一个新的 DFI 数据集,其中包含 240 张由 15 名医学生进行的众包手动 A/V 分割,并由眼科医生进行了审查。然后,我们开发了 LUNet,这是一种针对高分辨率 A/V 分割优化的新型深度学习架构。LUNet 模型的特点是双扩张卷积块,可扩大感受野并减少参数数量,同时还有一个高分辨率的尾部,可细化分割细节。设计了一个自定义损失函数,以优先考虑血管分割的连续性。LUNet 在本地测试集和四个模拟种族、合并症和注释者变化的外部测试集上均显著优于三种基准 A/V 分割算法。新数据集和 LUNet 模型(www.aimlab-technion.com/lirot-ai)的发布为推进视网膜微血管分析提供了有价值的资源。A/V 分割精度的提高突显了 LUNet 作为通过视网膜成像诊断和了解心血管疾病的强大工具的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验