Suppr超能文献

用新型改性 MOF 纳米结构解决废水中抗生素污染问题:分子模拟和 DFT 计算研究。

Tackling antibiotic contaminations in wastewater with novel Modified-MOF nanostructures: A study of molecular simulations and DFT calculations.

机构信息

Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran; Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Leibniz Institute for Catalysis, Albert-Einstein-Straße 29a, D-18059 Rostock, Germany; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.

出版信息

Environ Res. 2024 Jul 1;252(Pt 2):118856. doi: 10.1016/j.envres.2024.118856. Epub 2024 Apr 8.

Abstract

The contamination of wastewater with antibiotics has emerged as a critical global challenge, with profound implications for environmental integrity and human well-being. Adsorption techniques have been meticulously investigated and developed to mitigate and alleviate their effects. In this study, we have investigated the adsorption behaviour of Erythromycin (ERY), Gentamicin (GEN), Levofloxacin (LEVO), and Metronidazole (MET) antibiotics as pharmaceutical contaminants (PHCs) on amide-functionalized (RC (=O)NH)/MIL-53 (Al) (AMD/ML53A), using molecular simulations and density functional theory (DFT) calculations. Based on our DFT calculations, it becomes apparent that the adsorption tendencies of antibiotics are predominantly governed by the presence of AMD functional groups on the adsorbent surface. Specifically, hydrogen bonding (HB) and van der Waals (vdW) interactions between antibiotics and AMD groups serve as the primary mechanisms facilitating adsorption. Furthermore, we have observed that the adsorption behaviors of these antibiotics are influenced by their respective functional groups, molecular shapes, and sizes. Our molecular simulations delved into how the AMD/ML53A surfaces interact with antibiotics as PHCs. Moreover, various chemical quantum descriptors based on Frontier Molecular Orbitals (FMO) were explored to elucidate the extent of AMD/ML53A adsorption and to assess potential alterations in their electronic properties throughout the adsorption process. Monte Carlo simulation showed that ERY molecules adsorb stronger to the adsorbent in acidic and basic conditions than other contaminants, with high energies: -404.47 kcal/mol in acidic and -6375.26 kcal/mol in basic environments. Molecular dynamics (MD) simulations revealed parallel orientation for the ERY molecule's adsorption on AMD/ML53A with 80% rejection rate. In conclusion, our study highlighted the importance of modeling in developing practical solutions for removing antibiotics as PHCs from wastewater. The insights gained from our calculations can facilitate the design of more effective adsorption materials, ultimately leading to a more hygienic and sustainable ecosystem.

摘要

废水受抗生素污染已成为全球性重大挑战,对环境完整性和人类健康均构成严重威胁。吸附技术已被深入研究和开发,以减轻和缓解其影响。在这项研究中,我们通过分子模拟和密度泛函理论(DFT)计算,研究了酰胺功能化(RC(=O)NH)/MIL-53(Al)(AMD/ML53A)作为吸附剂,对红霉素(ERY)、庆大霉素(GEN)、左氧氟沙星(LEVO)和甲硝唑(MET)等抗生素作为药物污染物(PHC)的吸附行为。根据我们的 DFT 计算,抗生素的吸附趋势主要受吸附剂表面上 AMD 官能团的存在所控制。具体来说,抗生素与 AMD 基团之间的氢键(HB)和范德华(vdW)相互作用是促进吸附的主要机制。此外,我们观察到这些抗生素的吸附行为受到它们各自的官能团、分子形状和大小的影响。我们的分子模拟深入研究了 AMD/ML53A 表面如何与作为 PHC 的抗生素相互作用。此外,还探讨了基于前线分子轨道(FMO)的各种化学量子描述符,以阐明 AMD/ML53A 吸附的程度,并评估吸附过程中其电子性质的潜在变化。蒙特卡罗模拟表明,在酸性和碱性条件下,ERY 分子比其他污染物更强烈地吸附在吸附剂上,能量分别为-404.47 kcal/mol 和-6375.26 kcal/mol。分子动力学(MD)模拟揭示了 ERY 分子在 AMD/ML53A 上的吸附呈平行取向,其排斥率为 80%。总之,我们的研究强调了建模在开发从废水中去除抗生素作为 PHC 的实际解决方案方面的重要性。我们的计算结果可以为设计更有效的吸附材料提供帮助,最终实现更卫生和可持续的生态系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验