Suppr超能文献

通过还原的 Mg 掺杂 CoO 促进过一硫酸盐活化降解四环素:动力学及电子传递途径的关键作用

Promoting oxygen vacancies utility for tetracycline degradation via peroxymonosulfate activation by reduced Mg-doped CoO: Kinetics and key role of electron transfer pathway.

机构信息

Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Southwest University, Chongqing, 400715, China.

Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing University, Chongqing, 400045, China.

出版信息

Environ Res. 2024 Jul 1;252(Pt 2):118892. doi: 10.1016/j.envres.2024.118892. Epub 2024 Apr 9.

Abstract

Developing cobalt-based catalysts with a high abundance of oxygen vacancies (V) and exceptional V utility efficiency for the prompt removal of stubborn contaminants through peroxymonosulfate (PMS) activation poses a significant challenge. Herein, we reported the synthesis of the reduced Mg-doped CoO nanosheets, i.e. Mg-doped CoO-r, via Mg doping and followed by NaBH reduction, aiming to degrade tetracycline (TC). Various characterization results illustrated that NaBH reduction imparted higher V utility efficiency to Mg-doped CoO-r, along with an ample presence of reduced Co species and an increased surface area, thereby substantially elevating PMS activation capability. Notably, Mg-doped CoO-r achieved more than 97.9% degradation of 20 mg/L TC within 10 min, showing an over 8-fold increase in reaction rate relative to the Mg-doped CoO (k: 0.3285 min vs 0.0399 min). The high removal efficiency of TC was sustained across a broad pH range of 3-11, even in the presence of common anions and humic acid. Radical quenching trials, EPR outcomes, and electrochemical analysis indicated that neither radicals nor O were the primary active species. Instead, electron transfer pathway played a dominant role in TC degradation. The Mg-doped CoO-r displayed excellent recyclability and versatility. Even after the fifth cycle, it maintained an impressive 83.0% removal of TC. Furthermore, it exhibited rapid degradation capabilities for various pollutants, including levofloxacin, pefloxacin, ciprofloxacin, malachite green, and rhodamine B. The TC degradation pathway was proposed based on LC-MS determination of its degradation intermediates. This study showcases an innovative strategy for the rational design of an efficient cobalt-based activator, leveraging electron transfer pathways through PMS activation to degrade antibiotics effectively.

摘要

开发富含氧空位 (V) 的钴基催化剂,并提高 V 的利用效率,以通过过一硫酸盐 (PMS) 活化来快速去除顽固污染物,这是一项重大挑战。在此,我们通过 Mg 掺杂和随后的 NaBH 还原合成了还原的 Mg 掺杂 CoO 纳米片,即 Mg 掺杂 CoO-r,旨在降解四环素 (TC)。各种表征结果表明,NaBH 还原赋予了 Mg 掺杂 CoO-r 更高的 V 利用效率,同时存在更多的还原 Co 物种和更大的表面积,从而大大提高了 PMS 的活化能力。值得注意的是,Mg 掺杂 CoO-r 在 10 分钟内实现了超过 97.9%的 20 mg/L TC 降解,其反应速率比 Mg 掺杂 CoO 提高了 8 倍以上(k:0.3285 min-1 比 0.0399 min-1)。TC 的去除效率在很宽的 pH 值范围(3-11)内都保持较高水平,即使存在常见的阴离子和腐殖酸也是如此。自由基猝灭试验、EPR 结果和电化学分析表明,不是自由基或 O 是主要的活性物质。相反,电子转移途径在 TC 降解中起主导作用。Mg 掺杂 CoO-r 表现出优异的可回收性和多功能性。即使在第五次循环后,它仍保持令人印象深刻的 83.0%的 TC 去除率。此外,它对各种污染物,包括左氧氟沙星、培氟沙星、环丙沙星、孔雀石绿和罗丹明 B,都表现出快速的降解能力。根据 LC-MS 测定的 TC 降解中间体,提出了 TC 的降解途径。本研究展示了一种通过 PMS 活化的电子转移途径来合理设计高效钴基活化剂的创新策略,有效地降解抗生素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验