Diaz Varela Judith Yareli, Burciaga Jurado Lucero Guadalupe, Olivas Armendáriz Imelda, Martínez Pérez Carlos Alberto, Chapa González Christian
Ingenieria Biomédica, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico.
Grupo de Nanomedicina, Universidad Autónoma de Ciudad Juárez, 32310, Ciudad Juárez, Chihuahua, Mexico.
Sci Rep. 2024 Apr 10;14(1):8405. doi: 10.1038/s41598-024-58755-8.
Polylactic acid (PLA) is a bioresorbable and biodegradable polymer extensively used in various biomedical and engineering applications. In this study, we investigated the mass loss and thermal properties of PLA-multi-walled carbon nanotube (MWCNT) composites under simulated physiological conditions. The composites were prepared by melting PLA with 0.1, 0.5, 1.0, and 5.0 wt% MWCNTs using an ultrasonic agitator, and FTIR analysis confirmed composite formation. Subsequently, the composites were subjected to hydrolysis under simulated physiological conditions (pH 7.4 and 37 °C) for up to 60 days. The results revealed that the mass loss of the composites decreased with increasing MWCNT content, suggesting that the presence of MWCNTs decelerated the hydrolysis process. On day 58, the mass loss of pure PLA was 12.5%, decreasing to 8.34% with 0.1% MWCNT, 5.94% with 0.5% MWCNT, 4.59% with 1% MWCNT, and 3.54% with 5.0% MWCNT. This study offers valuable insights into the behavior of PLA-MWCNT composites under physiologically simulated conditions, facilitating the development of new polymer composites with enhanced thermal stability and degradation resistance for biomedical applications.
聚乳酸(PLA)是一种可生物吸收和可生物降解的聚合物,广泛应用于各种生物医学和工程领域。在本研究中,我们研究了聚乳酸-多壁碳纳米管(MWCNT)复合材料在模拟生理条件下的质量损失和热性能。使用超声搅拌器将PLA与0.1%、0.5%、1.0%和5.0%重量百分比的MWCNT熔融制备复合材料,傅里叶变换红外光谱(FTIR)分析证实了复合材料的形成。随后,将复合材料在模拟生理条件(pH 7.4和37°C)下水解长达60天。结果表明,复合材料的质量损失随MWCNT含量的增加而降低,这表明MWCNT的存在减缓了水解过程。在第58天,纯PLA的质量损失为12.5%,含0.1%MWCNT时降至8.34%,含0.5%MWCNT时降至5.94%,含1%MWCNT时降至4.59%,含5.0%MWCNT时降至3.54%。本研究为PLA-MWCNT复合材料在生理模拟条件下的行为提供了有价值的见解,有助于开发具有更高热稳定性和抗降解性的新型聚合物复合材料用于生物医学应用。