Zygouri Panagiota, Athinodorou Antrea M, Spyrou Konstantinos, Simos Yannis V, Subrati Mohammed, Asimakopoulos Georgios, Vasilopoulos Konstantinos C, Vezyraki Patra, Peschos Dimitrios, Tsamis Konstantinos, Gournis Dimitrios P
Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece.
Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece.
Nanomaterials (Basel). 2023 Feb 13;13(4):714. doi: 10.3390/nano13040714.
Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via HSO and HNO has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.
碳纳米管(CNTs)除了具有纳米尺寸外,还具备优异的物理化学和结构特性,构成了一个用于递送不同治疗分子和药物系统的医学平台。羟基酪醇(HT)是一种具有强大抗氧化特性的分子,然而,它在生物体内会迅速代谢。固定在功能化碳纳米管上的HT可以提高其口服吸收,并保护其免受快速降解和消除。本研究调查了细胞氧化多壁碳纳米管(oxMWCNTs)作为HT生物相容性载体的作用。通过HSO和HNO对多壁碳纳米管进行氧化具有双重作用,因为这会导致亲水性增加,同时引入的氧官能团有助于药物递送。研究了HT、oxMWCNTS以及用HT功能化的oxMWCNTS(oxMWCNTS_HT)对两种不同细胞系(NIH/3T3和Tg/Tg)的体外作用。我们评估了毒性(MTT和克隆形成试验)、细胞周期阻滞和活性氧(ROS)形成。即使在高剂量下,两种细胞系都能应对oxMWCNTs。oxMWCNTS_HT在Tg/Tg细胞中作为促氧化剂起作用,而在NIH/3T3细胞中作为抗氧化剂起作用。这些发现表明,oxMWCNTs未来可能会发展成为一种有前景的纳米载体,适用于靶向药物递送。