Suppr超能文献

生物信息学驱动的脑缺血再灌注损伤诊断生物标志物的鉴定与验证

Bioinformatics-driven identification and validation of diagnostic biomarkers for cerebral ischemia reperfusion injury.

作者信息

Yang Yuan, Duan Yushan, Jiang Huan, Li Junjie, Bai Wenya, Zhang Qi, Li Junming, Shao Jianlin

机构信息

Department of Anesthesiology, The First Affiliated Hospital, Kunming Medical University, Kunming, China.

Department of Critical Care Medicine, The Second Affiliated Hospital, Kunming Medical University, Kunming, China.

出版信息

Heliyon. 2024 Mar 31;10(7):e28565. doi: 10.1016/j.heliyon.2024.e28565. eCollection 2024 Apr 15.

Abstract

OBJECTIVE

This article aims to identify genetic features associated with immune cell infiltration in cerebral ischemia-reperfusion injury (CIRI) development through bioinformatics, with the goal of discovering diagnostic biomarkers and potential therapeutic targets.

METHODS

We obtained two datasets from the Gene Expression Omnibus (GEO) database to identify immune-related differentially expressed genes (IRDEGs). These genes' functions were analyzed via Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Tools such as CIBERSORT and ssGSEA assessed immune cell infiltration. The Starbase and miRDB databases predicted miRNAs interacting with hub genes, and Cytoscape software mapped mRNA-miRNA interaction networks. The ENCORI database was employed to predict RNA binding proteins interacting with hub genes. Key genes were identified using a random forest algorithm and constructing a Support Vector Machine (SVM) model. LASSO regression analysis constructed a diagnostic model for hub genes to determine their diagnostic value, and PCR analysis validated their expression in cerebral ischemia-reperfusion.

RESULTS

We identified 10 IRDEGs (C1qa, Ccl4, Cd74, Cd8a, Cxcl10, Gmfg, Grp, Lgals3bp, Timp1, Vim). The random forest algorithm, and SVM model intersection revealed three key genes (, , ) as diagnostic biomarkers for CIRI. LASSO regression analysis, further refined this to two key genes (Ccl4 and C1qa), With ROC curve, analysis confirming their diagnostic efficacy (C1qa AUC = 0.75, Ccl4 AUC = 0.939). PCR analysis corroborated these findings.

CONCLUSIONS

Our study elucidates immune and metabolic response mechanisms in CIRI, identifying two immune-related genes as key biomarkers and potential therapeutic targets in response to cerebral ischemia-reperfusion injury.

摘要

目的

本文旨在通过生物信息学方法鉴定与脑缺血再灌注损伤(CIRI)发展过程中免疫细胞浸润相关的基因特征,以发现诊断生物标志物和潜在治疗靶点。

方法

我们从基因表达综合数据库(GEO)获取了两个数据集,以鉴定免疫相关差异表达基因(IRDEGs)。通过基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析这些基因的功能。使用CIBERSORT和ssGSEA等工具评估免疫细胞浸润情况。利用Starbase和miRDB数据库预测与枢纽基因相互作用的miRNA,并用Cytoscape软件绘制mRNA-miRNA相互作用网络。采用ENCORI数据库预测与枢纽基因相互作用的RNA结合蛋白。使用随机森林算法鉴定关键基因并构建支持向量机(SVM)模型。通过LASSO回归分析构建枢纽基因的诊断模型以确定其诊断价值,并用PCR分析验证其在脑缺血再灌注中的表达。

结果

我们鉴定出10个IRDEGs(C1qa、Ccl4、Cd74、Cd8a、Cxcl10、Gmfg、Grp、Lgals3bp、Timp1、Vim)。随机森林算法和SVM模型的交集揭示了3个关键基因( 、 、 )作为CIRI的诊断生物标志物。LASSO回归分析进一步将其细化为2个关键基因(Ccl4和C1qa),ROC曲线分析证实了它们的诊断效力(C1qa的AUC = 0.75,Ccl4的AUC = 0.939)。PCR分析证实了这些发现。

结论

我们的研究阐明了CIRI中的免疫和代谢反应机制,鉴定出两个免疫相关基因作为应对脑缺血再灌注损伤的关键生物标志物和潜在治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b0b/11004763/6fcdd7641aa0/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验