Xu Tongtong, Jiang Wentao, Tao Yu, Abdellatief Mahmoud, Cordova Kyle E, Zhang Yue-Biao
School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME), Allan 19252, Jordan.
J Am Chem Soc. 2024 Apr 11. doi: 10.1021/jacs.4c00045.
Zeolitic imidazolate frameworks (ZIFs) hold great promise in carbon capture, owing to their structural designability and functional porosity. However, intrinsic linker dynamics limit their pressure-swing adsorption application to biogas upgrading and methane purification. Recently, a functionality-locking strategy has shown feasibility in suppressing such dynamics. Still, a trade-off between structural rigidity and uptake capacity remains a key challenge for optimizing their high-pressure CO/CH separation performance. Here, we report a sequential structural locking (SSL) strategy for enhancing the CO capture capacity and CH purification productivity in dynamic ZIFs (dynaZIFs). Specifically, we isolated multiple functionality-locked phases, ZIF-78-lt, -ht1, and -ht2, by activation at 50, 160, and 210 °C, respectively. We observed multiple-level locking through gas adsorption and powder X-ray diffraction. We uncovered an SSL mechanism dominated by linker-linker π-π interactions that transit to C-H···O hydrogen bonds with binding energies increasing from -0.64 to -2.77 and -5.72 kcal mol, respectively, as evidenced by single-crystal X-ray diffraction and density functional theory calculations. Among them, ZIF-78-ht1 exhibits the highest CO capture capacity (up to 18.6 mmol g) and CH purification productivity (up to 7.6 mmol g) at 298 K and 30 bar. These findings provide molecular and energetic insights into leveraging framework flexibility through the SSL mechanism to optimize porous materials' separation performance.
沸石咪唑酯骨架材料(ZIFs)因其结构可设计性和功能孔隙率在碳捕获方面具有巨大潜力。然而,内在的连接体动力学限制了它们在变压吸附应用中用于沼气升级和甲烷净化。最近,一种功能锁定策略已显示出抑制这种动力学的可行性。尽管如此,结构刚性和吸附容量之间的权衡仍然是优化其高压CO/CH分离性能的关键挑战。在此,我们报告一种顺序结构锁定(SSL)策略,以提高动态ZIFs(dynaZIFs)中的CO捕获能力和CH净化效率。具体而言,我们分别通过在50、160和210°C下活化,分离出多个功能锁定相,即ZIF-78-lt、-ht1和-ht2。我们通过气体吸附和粉末X射线衍射观察到多级锁定。我们发现一种由连接体-连接体π-π相互作用主导的SSL机制,该相互作用转变为C-H···O氢键,结合能分别从-0.64增加到-2.77和-5.72 kcal mol,单晶X射线衍射和密度泛函理论计算证明了这一点。其中,ZIF-78-ht1在298 K和30 bar下表现出最高的CO捕获能力(高达18.6 mmol g)和CH净化效率(高达7.6 mmol g)。这些发现为通过SSL机制利用骨架灵活性来优化多孔材料的分离性能提供了分子和能量方面的见解。