Qian Yujie, Roy Tarun Kumar, Jasper Ahren W, Sojdak Christopher A, Kozlowski Marisa C, Klippenstein Stephen J, Lester Marsha I
Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2401148121. doi: 10.1073/pnas.2401148121. Epub 2024 Apr 11.
The oxidation of cycloalkanes is important in the combustion of transportation fuels and in atmospheric secondary organic aerosol formation. A transient carbon-centered radical intermediate (•QOOH) in the oxidation of cyclohexane is identified through its infrared fingerprint and time- and energy-resolved unimolecular dissociation dynamics to hydroxyl (OH) radical and bicyclic ether products. Although the cyclohexyl ring structure leads to three nearly degenerate •QOOH isomers (β-, γ-, and δ-QOOH), their transition state (TS) barriers to OH products are predicted to differ considerably. Selective characterization of the β-QOOH isomer is achieved at excitation energies associated with the lowest TS barrier, resulting in rapid unimolecular decay to OH products that are detected. A benchmarking approach is employed for the calculation of high-accuracy stationary point energies, in particular TS barriers, for cyclohexane oxidation (CHO), building on higher-level reference calculations for the smaller ethane oxidation (CHO) system. The isomer-specific characterization of β-QOOH is validated by comparison of experimental OH product appearance rates with computed statistical microcanonical rates, including significant heavy-atom tunneling, at energies in the vicinity of the TS barrier. Master-equation modeling is utilized to extend the results to thermal unimolecular decay rate constants at temperatures and pressures relevant to cyclohexane combustion.
环烷烃的氧化在运输燃料燃烧和大气二次有机气溶胶形成过程中具有重要意义。通过其红外指纹以及对羟基(OH)自由基和双环醚产物的时间分辨与能量分辨单分子解离动力学,确定了环己烷氧化过程中的一种瞬态碳中心自由基中间体(•QOOH)。尽管环己基环结构导致三种近乎简并的•QOOH异构体(β -、γ - 和δ - QOOH),但预计它们生成OH产物的过渡态(TS)势垒差异很大。在与最低TS势垒相关的激发能量下实现了β - QOOH异构体的选择性表征,从而导致其快速单分子衰变为可检测到的OH产物。基于对较小乙烷氧化(CHO)系统的更高水平参考计算,采用一种基准方法来计算环己烷氧化(CHO)的高精度驻点能量,特别是TS势垒。通过将实验OH产物出现率与在TS势垒附近能量下计算的统计微正则速率(包括显著的重原子隧穿)进行比较,验证了β - QOOH的异构体特异性表征。利用主方程模型将结果扩展到与环己烷燃烧相关的温度和压力下的热单分子衰变速率常数。