Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117576 Singapore.
Department of Chemistry and the N.1 Institute for Health, National University of Singapore, 117543 Singapore.
Anal Chem. 2024 Apr 23;96(16):6148-6157. doi: 10.1021/acs.analchem.3c04898. Epub 2024 Apr 11.
Photodynamic therapy (PDT) provides an alternative approach to targeted cancer treatment, but the therapeutic mechanism of advanced nanodrugs applied to live cells and tissue is still not well understood. Herein, we employ the hybrid hyperspectral stimulated Raman scattering (SRS) and transient absorption (TA) microscopy developed for real-time in vivo visualization of the dynamic interplay between the unique photoswichable lanthanide-doped upconversion nanoparticle-conjugated rose bengal and triphenylphosphonium (LD-UCNP@CS-Rb-TPP) probe synthesized and live cancer cells. The Langmuir pharmacokinetic model associated with SRS/TA imaging is built to quantitatively track the uptakes and pharmacokinetics of LD-UCNP@CS-Rb-TPP within cancer cells. Rapid SRS/TA imaging quantifies the endocytic internalization rates of the LD-UCNP@CS-Rb-TPP probe in individual HeLa cells, and the translocation of LD-UCNP@CS-Rb-TPP from mitochondria to cell nuclei monitored during PDT can be associated with mitochondria fragmentations and the increased nuclear membrane permeability, cascading the dual organelle ablations in cancer cells. The real-time SRS spectral changes of cellular components (e.g., proteins, lipids, and DNA) observed reflect the PDT-induced oxidative damage and the dose-dependent death pattern within a single live cancer cell, thereby facilitating the real-time screening of optimal light dose and illumination duration controls in PDT. This study provides new insights into the further understanding of drug delivery and therapeutic mechanisms of photoswitchable LD-UCNP nanomedicine in live cancer cells, which are critical in the optimization of nanodrug formulations and development of precision cancer treatment in PDT.
光动力疗法(PDT)为靶向癌症治疗提供了一种替代方法,但应用于活细胞和组织的先进纳米药物的治疗机制仍未得到很好的理解。在此,我们采用了混合的高光谱受激拉曼散射(SRS)和瞬态吸收(TA)显微镜,用于实时体内可视化独特的光开关镧系掺杂上转换纳米颗粒缀合的孟加拉玫瑰红和三苯基膦(LD-UCNP@CS-Rb-TPP)探针与活癌细胞之间的动态相互作用。建立了与 SRS/TA 成像相关的 Langmuir 药代动力学模型,以定量跟踪 LD-UCNP@CS-Rb-TPP 在癌细胞内的摄取和药代动力学。快速的 SRS/TA 成像定量量化了 LD-UCNP@CS-Rb-TPP 探针在单个 HeLa 细胞中的内吞内化速率,并且在 PDT 期间监测到的 LD-UCNP@CS-Rb-TPP 从线粒体到细胞核的易位可与线粒体片段化和核膜通透性增加相关联,从而引发癌细胞中双重细胞器消融。观察到的细胞成分(例如蛋白质、脂质和 DNA)的实时 SRS 光谱变化反映了 PDT 诱导的氧化损伤和单个活癌细胞内的剂量依赖性死亡模式,从而有助于实时筛选 PDT 中最佳光剂量和照射持续时间的控制。这项研究为进一步理解活癌细胞中光开关 LD-UCNP 纳米医学的药物传递和治疗机制提供了新的见解,这对于纳米药物制剂的优化和 PDT 中精准癌症治疗的发展至关重要。