Nantes Université, Ecole Centrale Nantes, CNRS, LHEEA, UmR 6598, Nantes, CA, France.
Nantes Université, Ecole Centrale Nantes, CNRS, LHEEA, UmR 6598, Nantes, France.
J Environ Manage. 2024 May;358:120861. doi: 10.1016/j.jenvman.2024.120861. Epub 2024 Apr 10.
In electric vehicles, the Heating, Ventilation and Air-Conditioning (HVAC) function is often performed by a heat pump. Heating and cooling the cabin air drains energy directly from the vehicle's battery. In addition, these vehicles may operate in environments with high level of air pollution. In the cabin, passengers are confined to a small space where particles and harmful gases can accumulate. In addition, the ventilation system must also handle the air which does not enter the cabin through blower operation. This "infiltration" is a function of the vehicle speed and allows pollution to enter the cabin without being filtered or thermally treated. The objective of the study is to optimize the competing goals of the HVAC system: achieving the best air quality while maintaining good thermal comfort, at minimum energy costs. A system simulation tool is calibrated to represent the heating and cooling of an electric car. With this model, the influence of key factors is evaluated. Depending on ambient conditions and other parameters (number of occupants, vehicle speed, etc.), the blower flow rate and recirculation ratio can be adjusted to reach the objectives. The management of the proportion of fresh and recirculated air allows to regulate the humidity and carbon dioxide levels. Optimum controls are proposed as good trade-offs to reduce the power consumption, while maintaining a safe and comfortable environment for occupants. Compared to the full fresh air mode, the driving range gains are estimated in cold (-15 °C) and hot (30 °C) scenarios at 9 and 26 km respectively.
在电动汽车中,加热、通风和空调(HVAC)功能通常由热泵执行。加热和冷却机舱空气会直接从车辆电池中消耗能量。此外,这些车辆可能在空气污染水平较高的环境中运行。在机舱内,乘客被限制在一个小空间内,其中颗粒和有害气体可能会积聚。此外,通风系统还必须处理未通过鼓风机操作进入机舱的空气。这种“渗透”是车辆速度的一个功能,允许污染进入机舱而不进行过滤或热处理。研究的目的是优化 HVAC 系统的竞争目标:在最低能源成本下,实现最佳空气质量并保持良好的热舒适度。一个系统模拟工具被校准以代表电动汽车的加热和冷却。使用该模型,评估了关键因素的影响。根据环境条件和其他参数(乘客人数、车辆速度等),可以调整鼓风机流量和再循环比以达到目标。新鲜空气和再循环空气的比例的管理允许调节湿度和二氧化碳水平。提出了最优控制措施,作为降低功耗的良好折衷方案,同时为乘客提供安全舒适的环境。与全新鲜空气模式相比,在寒冷(-15°C)和炎热(30°C)情况下,驾驶里程分别增加了 9 公里和 26 公里。